A. | y=log2x+logx2(0<x<1) | B. | y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ | ||
C. | y=ex+e-x | D. | y=x+$\frac{1}{x}$ |
分析 A.由0<x<1,可得:y=log2x+logx2<0,即可判斷出正誤.
B.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$>2,即可判斷出正誤.
C.y=${e}^{x}+\frac{1}{{e}^{x}}$$≥2\sqrt{{e}^{x}•\frac{1}{{e}^{x}}}$=2,即可判斷出正誤.
D.x<0時,y<0,最小值不可能是2.
解答 解:A.∵0<x<1,∴y=log2x+logx2<0,因此最小值不可能是2.
B.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$>2,因此最小值不可能是2.
C.y=${e}^{x}+\frac{1}{{e}^{x}}$$≥2\sqrt{{e}^{x}•\frac{1}{{e}^{x}}}$=2,當且僅當x=0時取等號,因此y的最小值為2,正確.
D.x<0時,y<0,最小值不可能是2.
綜上可得:函數(shù)最小值為2的是C.
故選:C.
點評 本題考查了基本不等式的性質(zhì)、函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016 | B. | 4032 | C. | 4026 | D. | 2013 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c>b>a | B. | b>c>a | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com