18.已知函數(shù)f(x)=x2-(2a+1)x+alnx(a∈R).
(Ⅰ)若a>$\frac{1}{2}$,求y=f(x)的單調(diào)區(qū)間;
(Ⅱ)函數(shù)g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)若?x0∈[1,e]使得f(x0)≥g(x0)成立,轉(zhuǎn)化為f(x)≥g(x)在區(qū)間[1,e]上有解,利用參數(shù)分離法進(jìn)行求解即可.

解答 解:(Ⅰ)函數(shù)的定義域是(0,+∞),
f′(x)=$\frac{(2x-1)(x-a)}{x}$,(x>0,a>$\frac{1}{2}$),
令f′(x)>0,解得:x>a或0<x<$\frac{1}{2}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<a,
∴f(x)在(0,$\frac{1}{2}$)遞增,在($\frac{1}{2}$,a)遞減,在(a,+∞)遞增;
(Ⅱ)由題意知,不等式f(x)≥g(x)在區(qū)間[1,e]上有解,
即x2-2x+a(lnx-x)≥0在區(qū)間[1,e]上有解,
∵當(dāng)x∈[1,e]時(shí),lnx≤1≤x(不同時(shí)取等號(hào)),
∴l(xiāng)nx-x<0,
∴a≤$\frac{{x}^{2}-2x}{x-lnx}$在區(qū)間[1,e]上有解,
令 h(x)=$\frac{{x}^{2}-2x}{x-lnx}$,則h′(x)=$\frac{(x-1)(x+2-2lnx)}{{(x-lnx)}^{2}}$,
∵x∈[1,e],∴x+2>2≥2lnx,
∴h′(x)≥0,則h(x)單調(diào)遞增,
∴x∈[1,e]時(shí),h(x)的最大值為h(e)=$\frac{e(e-2)}{e-1}$,
∴a≤$\frac{e(e-2)}{e-1}$,
則實(shí)數(shù)a的取值范圍是(-∞,$\frac{e(e-2)}{e-1}$].

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識(shí),意在考查轉(zhuǎn)化與化歸思想的運(yùn)用和綜合分析問題解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{x^2}{b^2}$=1的右焦點(diǎn)為F,點(diǎn)A、B分別在C的兩條漸近線上,AF⊥x軸,AB⊥OB,BF∥OA,則雙曲線的離心率為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.sin50°cos20°-sin40°cos70°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.曲線y=lnx上的點(diǎn)到直線y=x+1的最短距離是( 。
A.$\sqrt{2}$B.2C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=x3+bx2+x恰有三個(gè)單調(diào)區(qū)間,則實(shí)數(shù)b的取值范圍為(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=loga(ax+k)(a>0,a≠1)的定義域?yàn)镈,若存在[m,n]⊆D,使f(x)在[m,n]上的值域?yàn)閇$\frac{1}{2}$m,$\frac{1}{2}$n],則k的取值范圍是(  )
A.(0,+∞)B.(-∞,$\frac{1}{4}}$)C.(0,$\frac{1}{4}}$]D.(0,$\frac{1}{4}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.證明:1-$\frac{1}{x+1}$≤ln(x+1)≤x,其中x>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx-x+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{\frac{1}{2},2}]$上的極值及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.閱讀下列命題:
①若點(diǎn)P(a,2a) (a≠0)為角α終邊上一點(diǎn),則sin α=$\frac{2\sqrt{5}}{5}$;
②同時(shí)滿足sin α=$\frac{1}{2}$,cos α=$\frac{\sqrt{3}}{2}$的角有且只有一個(gè);
③設(shè)tan α=$\frac{1}{2}$且π<α<$\frac{3π}{2}$,則sin α=-$\frac{\sqrt{5}}{5}$;
④函數(shù)y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函數(shù)
其中正確命題的序號(hào)是③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案