15.已知直線l1:ax-y+3=0與直線l2:(a-1)x+2y-5=0,若直線l1的斜率為2,則a=2,若l1⊥l2,則a=2或-1.

分析 利用直線l1:ax-y+3=0的斜率為2,可求a;利用平面中的直線垂直的條件A1A2+B1B2=0,求出a的值.

解答 解:∵直線l1:ax-y+3=0的斜率為2,∴a=2.
∵l1⊥l2,∴a(a-1)-2=0,∴(a-2)(a+1)=0,∴a=2或a=-1.
故答案為:2;2或-1.

點評 本題考查了平面中的直線平行與垂直的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.有8人參加某次競賽,分別錄取第一名至第六名各一人,則不同選法共有( 。
A.A${\;}_{8}^{6}$種B.C${\;}_{8}^{6}$種C.6C${\;}_{8}^{1}$種D.6C${\;}_{8}^{6}$種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知雙曲線$\frac{y^2}{a^2}$-$\frac{x^2}{7}$=1(a>0)的一個焦點與拋物線y=$\frac{1}{16}$x2的焦點重合,則實數(shù)a=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若 x>0,y>0.且 x+y≤4,則下列不等式中恒成立的是( 。
A.$\frac{1}{x+y}$≤$\frac{1}{4}$B.$\frac{1}{x}$+$\frac{1}{y}$≤1C.$\sqrt{xy}$≥2D.$\frac{1}{xy}$≥$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設等差數(shù)列{an}的前n項和為Sn,若a1=-40,a6+a10=-10,則S8=-180.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設等差數(shù)列{an}的前n項和為Sn,若a5+a14=10,則S18等于( 。
A.20B.60C.90D.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知一個扇形的半徑為1,弧長為4,則這個扇形的面積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)是R上的奇函數(shù),且f(x+4)=f(x),當x∈(0,2)時,f(x)=2x2,則f(2015)+f(2)=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設函數(shù)f(x)=mx+2,g(x)=x2-2x,?x0∈[-1,2],?x1∈[-1,2],使得f(x0)>g(x1),則實數(shù)m的取值范圍是-1.5<m<3.

查看答案和解析>>

同步練習冊答案