分析 (1)an=$\frac{1}{2}$an-1+1的兩邊減2,再由等比數(shù)列的定義即可得證;
(2)運(yùn)用等比數(shù)列和等差數(shù)列的通項(xiàng)公式,計(jì)算即可得到;
(3)求得an•bn=[2+($\frac{1}{2}$)n-1](2n-1)=2(2n-1)+(2n-1)•($\frac{1}{2}$)n-1,再由數(shù)列的求和方法:分組求和和錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.
解答 證明:(1)a1=3,an=$\frac{1}{2}$an-1+1(n≥2),
an-2=$\frac{1}{2}$(an-1-2),
則數(shù)列{an-2}為首項(xiàng)為1,公比為$\frac{1}{2}$的等比數(shù)列;
解:(2)由(1)可得an-2=($\frac{1}{2}$)n-1,
即為an=2+($\frac{1}{2}$)n-1,
a1=b2=3,
2a3+a2=b4=2(2+$\frac{1}{4}$)+2+$\frac{1}{2}$=7,
可得等差數(shù)列{bn}的公差d=$\frac{7-3}{4-2}$=2,
則bn=b2+(n-2)d=3+2(n-2)=2n-1;
(3)數(shù)列{an•bn}的前n項(xiàng)和為T(mén)n,
an•bn=[2+($\frac{1}{2}$)n-1](2n-1)=2(2n-1)+(2n-1)•($\frac{1}{2}$)n-1,
設(shè)Sn=1•($\frac{1}{2}$)0+3•($\frac{1}{2}$)+5•($\frac{1}{2}$)2+…+(2n-1)•($\frac{1}{2}$)n-1,
$\frac{1}{2}$Sn=1•($\frac{1}{2}$)+3•($\frac{1}{2}$)2+5•($\frac{1}{2}$)3+…+(2n-1)•($\frac{1}{2}$)n,
相減可得,$\frac{1}{2}$Sn=1+2[($\frac{1}{2}$)+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1]-(2n-1)•($\frac{1}{2}$)n
=1+2[$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$]-(2n-1)•($\frac{1}{2}$)n,
化簡(jiǎn)可得Sn=6-$\frac{4n+6}{{2}^{n}}$,
則Tn=2•$\frac{1}{2}$n(1+2n-1)+6-$\frac{4n+6}{{2}^{n}}$=2n2+6-$\frac{4n+6}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,同時(shí)考查數(shù)列的求和方法:分組求和和錯(cuò)位相減法,考查化簡(jiǎn)整理的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰直角三角形 | C. | 直角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com