7.已知直線l⊥平面α,直線m?平面β,則l⊥m的一個充分不必要條件是( 。
A.α⊥βB.α∥βC.m⊥αD.l∥β

分析 當(dāng)α∥β時,由線面垂直的性質(zhì)可得l⊥m,故必要性成立;當(dāng) l⊥m 時,不一定有α∥β,故充分性不成立.

解答 解:若直線l⊥平面α,直線m?平面β,
若α∥β,則l⊥m,
反之,不成立,
故選:C.

點評 本題考查充分條件、必要條件的定義,兩個平面平行的判定,證明充分性不成立是解題的難點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)參加科普知識競賽,需要回答3個問題.競賽規(guī)則規(guī)定:每題回答正確得30分,不答或回答不正確得-30分.假設(shè)這名同學(xué)每題回答正確的概率為0.8,且各題回答正確與否相互之間沒有影響,
(1)求這名同學(xué)回答這3個問題的總得分X的概率分布列;
(2)若不少于30分就算入圍,求這名同學(xué)入圍的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow a=(1,1,x)$,$\overrightarrow b=(1,2,1)$,$\overrightarrow c=(1,2,3)$滿足$(\overrightarrow c-\overrightarrow a)•\overrightarrow b=-1$,則x=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知[x]為不超過實數(shù)x的最大整數(shù),g(x)=[x]是取整函數(shù),x0是函數(shù)$f(x)={e^x}-\frac{2}{x}$的零點,則g(x0)等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-2ax+lnx+a+1.
(1)當(dāng)$a=-\frac{1}{4}$時,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在區(qū)間[2,4]上是減函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)x∈[1,+∞]時,函數(shù)y=f(x)圖象上的點都在$\begin{array}{l}\left\{\begin{array}{l}x≥1\\ y-x≤0\end{array}\right.\end{array}$所表示的平面區(qū)域內(nèi),求數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線l過點(1,2),且與直線x+2y=0垂直,則直線l的方程為2x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=2xf′(e)+lnx,則f(e)=( 。
A.-eB.eC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓x2+(y-4)2=4的圓心與點P(2,0)關(guān)于直線l對稱,則直線l的方程為(  )
A.x-y=0B.x-2y+3=0C.x+y-3=0D.x-2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.曲線y=xex在點(1,1)處的瞬時變化率等于( 。
A.2eB.eC.2D.1

查看答案和解析>>

同步練習(xí)冊答案