16.某班級有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢問了該班五名男生和五名女生在某次數(shù)學(xué)測驗(yàn)中的成績,五名男生的成績分別為116,124,118,122,120,五名女生的成績分別為118,123,123,118,123,下列說法一定正確的是( 。
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班級男生成績的平均數(shù)小于該班女生成績的平均數(shù)

分析 根據(jù)抽樣方法的特點(diǎn),知既不是分層抽樣,也不是系統(tǒng)抽樣;從這五名學(xué)生的成績得不出該班的男生成績和女生成績的平均分,能求出方差.由此能求出結(jié)果.

解答 解:根據(jù)抽樣方法的特點(diǎn),可知既不是分層抽樣,也不是系統(tǒng)抽樣,
故A,B是錯的,
從這五名學(xué)生的成績得不出該班的男生成績和女生成績的平均分,故D是錯的,
根據(jù)公式,求得五名男生成績的方差為${s_1}^2=8$,
五名女生成績的方差為${s_2}^2=6$,
∴這五名男生成績的方差大于這五名女生成績的方差,故C正確.
故選:C.

點(diǎn)評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意抽樣方法、方差、平均數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平面向量$\overrightarrow{a}$與$\overrightarrow$相互垂直,$\overrightarrow{a}$=(-1,1)|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為( 。
A.y=cos2x,x∈RB.y=$\frac{{e}^{x}-{e}^{-x}}{2}$,x∈RC.y=$sin|\frac{x}{2}|$,x?RD.y=x3+x,x?R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等比數(shù)列{an}滿足a1+a3+a5=21,a3+a5+a7=42,則a1=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知?x∈(0,+∞),[(m-1)x-1](2x-2)≥0恒成立,則m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.給出下列命題:
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x≠1”;
②已知兩圓A:(x+1)2+y2=1,圓B:(x-1)2+y2=25,動圓M與圓A外切、與圓B內(nèi)切,則動圓的圓心M的軌跡是橢圓;
③若向量$\overrightarrow b=({3,m})$在$\overrightarrow a=({1,\sqrt{3}})$方向上的投影為3,則實(shí)數(shù)$m=\sqrt{3}$;
④在數(shù)列{an}中,a1=1,Sn是其前n項(xiàng)和,且滿足${S_{n+1}}=\frac{1}{2}{S_n}+2$,則{an}是等比數(shù)列.
其中正確的命題序號是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.作出下列函數(shù)圖象.
(1)y=x(-2≤x≤3,x∈Z,x≠0)
(2)y=-2x2+4x+1(0<x≤4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知關(guān)于x的方程xln x=ax+1(a∈R),下列說法正確的是( 。
A.有兩不等根B.只有一正根C.無實(shí)數(shù)根D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若向量$\overrightarrow{a}$=(1,-x)與向量$\overrightarrow$=(x,-6)方向相反,則x=$-\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案