8.已知A={x|y=$\sqrt{4-{x}^{2}}$},B={y|y=2x-1},則∁R(A∩B)=(  )
A.RB.C.(0,2]D.(-∞,0]∪(2,+∞)

分析 化簡集合A、B,求出A∩B與∁R(A∩B)即可.

解答 解:A={x|y=$\sqrt{4-{x}^{2}}$}={x|4-x2≥0}={x|-2≤x≤2}=[-2,2],
B={y|y=2x-1}={y|y>0}=(0,+∞),
∴A∩B=(0,2],
∴∁R(A∩B)=(-∞,0]∪(2,+∞).
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=cos(3x+$\frac{π}{3}$)+cos(3x-$\frac{π}{3}$)+2sin$\frac{3x}{2}$cos$\frac{3x}{2}$,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a=$\sqrt{3}$,c=2,B=150°,則邊b的長為( 。
A.13B.$\sqrt{13}$C.$\frac{\sqrt{22}}{2}$D.$\sqrt{22}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐A-DBCE中,底面DBCE為平行四邊形,F(xiàn)為AE的中點,求證:AB∥平面DCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)P是△ABC所在平面內(nèi)的一點,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AP}$,則△PBC與△ABC的面積之比是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,已知a,b,c成等比數(shù)列.若 $\frac{sinA}{sinC}$-1=$\frac{a-b}{a+c}$,判斷△ABC的形狀(說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某同學(xué)要參加5門學(xué)業(yè)水平測試,每門可通過的概率都是$\frac{3}{4}$,則5門課至少通過4門的概率是$\frac{81}{128}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知動點M(x,y)到點F(2,0)的距離比它到y(tǒng)軸的距離大2.
(1)求動點M的軌跡方程C.
(2)已知斜率為2的直線經(jīng)過點F,且與軌跡C相交于A、B兩點.求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=-i+2,則z的虛部為( 。
A.iB.-1C.1D.-i

查看答案和解析>>

同步練習(xí)冊答案