7.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到函數(shù)y=cos(2x+$\frac{π}{6}$)的圖象,只需將y=f(x)的圖象(  )
A.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度

分析 由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式,再利用y=Asin(ωx+φ)的圖象變換規(guī)律、誘導(dǎo)公式,求得結(jié)論.

解答 解:根據(jù)函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象,
可得$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{π}{3}$,∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{3}$+φ=π,求得φ=$\frac{π}{3}$,可得f(x)=sin(2x+$\frac{π}{3}$).
函數(shù)y=cos(2x+$\frac{π}{6}$)=sin ($\frac{π}{3}$-2x)=-sin(2x-$\frac{π}{3}$)=sin(2x+$\frac{2π}{3}$),
故把f(x)=sin(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位,
可得函數(shù)y=sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]=sin(2x+$\frac{2π}{3}$)=cos(2x+$\frac{π}{6}$)的圖象,
故選:C.

點(diǎn)評(píng) 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式,y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)△ABC的面積為S,角A,B,C的對(duì)邊分別為a,b,c,$4S=\sqrt{3}({b^2}+{c^2}-{a^2})$.
(1)求∠A;
(2)求$sin(A+{10°})[{1-\sqrt{3}tan(A-{{10}°})}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:$2{S_n}={a_n}^2+n,({a_n}>0,n∈{N^*})$.
(1)求a1,a2,a3;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(3)若bn=$\frac{{a}_{n}}{{2}^{n}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=${x^{\frac{2}{3}}}$的導(dǎo)函數(shù)為( 。
A.$y=\frac{2}{3}{x^{\frac{1}{3}}}$B.$y={x^{-\frac{1}{3}}}$C.$y=-\frac{2}{3}{x^{-\frac{1}{3}}}$D.$y=\frac{2}{{3\root{3}{x}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.F是拋物線y2=2x的焦點(diǎn),A、B是拋物線上的兩點(diǎn),|AF|+|BF|=8,則線段AB的中點(diǎn)到y(tǒng)軸的距離為( 。
A.4B.$\frac{9}{2}$C.$\frac{7}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.f(x)是定義在R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為f(x) 的極值點(diǎn)的必要不充分條件.(填充分不必要,必要不充分,充要條件或既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=ex-$\frac{m}{x}$在區(qū)間[1,2]上的最小值為1,則實(shí)數(shù)m的值為e-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,sinA:sinB:sinC=$\sqrt{21}$:4:5,則角A=(  )
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則下面結(jié)論正確的是( 。
A.函數(shù)f(x)的最小正周期為$\frac{π}{2}$B.φ=$\frac{π}{9}$
C.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{5π}{6}$對(duì)稱D.函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案