分析 (I)求出M(-$\frac{1}{2}$,0),可得$\frac{p}{2}$=$\frac{1}{2}$,即可求拋物線C1的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(x0,y0),A(0,b),B(0,c),求得直線PA的方程,運(yùn)用直線和圓相切的條件:d=r,求得b,c的關(guān)系,求得△PAB的面積,結(jié)合基本不等式,即可得到最小值.
解答 解:(I)由題意,C2(1,0),
∵|MC2|=3|OM|,
∴M(-$\frac{1}{2}$,0),
∴$\frac{p}{2}$=$\frac{1}{2}$,
∴p=1,
∴拋物線C1的標(biāo)準(zhǔn)方程是y2=2x;
(Ⅱ)設(shè)P(x0,y0),A(0,b),B(0,c),
直線PA的方程為:(y0-b)x-x0y+x0b=0,
又圓心(1,0)到PA的距離為1,
即$\frac{|{y}_{0}-b+{x}_{0}b|}{\sqrt{({y}_{0}-b)^{2}+{{x}_{0}}^{2}}}$=1,整理得:(x0-2)b2+2y0b-x0=0,
同理可得:(x0-2)c2+2y0c-x0=0,
所以,可知b,c是方程(x0-2)x2+2y0x-x0=0的兩根,
所以b+c=$\frac{-2{y}_{0}}{{x}_{0}-2}$,bc=$\frac{-{x}_{0}}{{x}_{0}-2}$,
依題意bc<0,即x0>2,
則(c-b)2=$\frac{4{{x}_{0}}^{2}+4{{y}_{0}}^{2}-8{x}_{0}}{({x}_{0}-2)^{2}}$,
因?yàn)閥02=2x0,所以:|b-c|=|$\frac{2{x}_{0}}{{x}_{0}-2}$|
所以S=$\frac{1}{2}$|b-c|•|x0|=(x0-2)+$\frac{4}{{x}_{0}-2}$+4≥8
當(dāng)x0=4時上式取得等號,
所以△PAB面積最小值為8.
點(diǎn)評 本題考查拋物線的定義、方程和性質(zhì),主要考查定義法和方程的運(yùn)用,同時考查直線和圓相切的條件:d=r,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com