相關(guān)習(xí)題
 0  199785  199793  199799  199803  199809  199811  199815  199821  199823  199829  199835  199839  199841  199845  199851  199853  199859  199863  199865  199869  199871  199875  199877  199879  199880  199881  199883  199884  199885  199887  199889  199893  199895  199899  199901  199905  199911  199913  199919  199923  199925  199929  199935  199941  199943  199949  199953  199955  199961  199965  199971  199979  266669 

科目: 來(lái)源: 題型:

已知數(shù)列:0,5,0,5,0,5…,試寫出它的一個(gè)通項(xiàng)公式.

查看答案和解析>>

科目: 來(lái)源: 題型:

為了調(diào)查學(xué)生星期天晚上學(xué)習(xí)時(shí)間利用問(wèn)題,某校從高二年級(jí)1000名學(xué)生(其中走讀生450名,住宿生500名)中,采用分層抽樣的方法抽取n名學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)問(wèn)卷取得了這n名同學(xué)每天晚上學(xué)習(xí)時(shí)間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240],得到頻率分布直方圖如圖所示.已知抽取的學(xué)生中星期天晚上學(xué)習(xí)時(shí)間少于60分鐘的人數(shù)為5人;
(1)求n的值并補(bǔ)全下列頻率分布直方圖;
(2)如果把“學(xué)生晚上學(xué)習(xí)時(shí)間達(dá)到兩小時(shí)”作為是否充分利用時(shí)間的標(biāo)準(zhǔn),對(duì)抽取的n名學(xué)生,完成下列2×2列聯(lián)表:
利用時(shí)間充分利用時(shí)間不充分總計(jì)
走讀生
住宿生10
總計(jì)
據(jù)此資料,你是否認(rèn)為學(xué)生“利用時(shí)間是否充分”與走讀、住宿有關(guān)?
(3)若在第①組、第②組、第⑧組中共抽出3人調(diào)查影響有效利用時(shí)間的原因,記抽到“學(xué)習(xí)時(shí)間少于60分鐘”的學(xué)生人數(shù)為X,求X的分布列及期望;
參考公式:K2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目: 來(lái)源: 題型:

已知[x]表示不超過(guò)x的最大整數(shù),例如[-1.5]=-2,[1.2]=1.設(shè)函數(shù)f(x)=[x[x]],當(dāng)x∈[0,n),(n∈N*)時(shí),函數(shù)f(x)的值域?yàn)榧螦,則A中的元素個(gè)數(shù)為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

函數(shù)f(x)=log
1
2
(x2-4)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

下列函數(shù)中,滿足
f(x1)+f(x2)
2
≥f(
x1+x2
2
)的是
 

①f(x)=ax+b;
②f(x)=x2+ax+b;
③f(x)=
1
x
;
④f(x)=log2
1
x

查看答案和解析>>

科目: 來(lái)源: 題型:

一個(gè)實(shí)數(shù)與一個(gè)虛數(shù)的差( 。
A、不可能是純虛數(shù)
B、可能是實(shí)數(shù)
C、不可能是實(shí)數(shù)
D、無(wú)法確定是實(shí)數(shù)還是虛數(shù)

查看答案和解析>>

科目: 來(lái)源: 題型:

已知關(guān)于x的方程x2+(4+i)x+3+pi=0(p∈R)有實(shí)數(shù)根,求p的值,并解這個(gè)方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)Cn=4n+(-1)n-1•λ2an(λ為非零整數(shù),n∈N*),是否存在確定λ的值,使得對(duì)任意n∈N*,有Cn+1>Cn恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

求sin42°sin72°+cos42°cos72°的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

若已知α∈(-
π
2
,0),且sin(π-α)=log8
1
4
,則cos(2π-α)的值等于( 。
A、
5
3
B、-
5
3
C、±
5
3
D、
2
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案