相關(guān)習題
 0  229192  229200  229206  229210  229216  229218  229222  229228  229230  229236  229242  229246  229248  229252  229258  229260  229266  229270  229272  229276  229278  229282  229284  229286  229287  229288  229290  229291  229292  229294  229296  229300  229302  229306  229308  229312  229318  229320  229326  229330  229332  229336  229342  229348  229350  229356  229360  229362  229368  229372  229378  229386  266669 

科目: 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上的小正方形的邊長為l,粗線畫出的是某幾何體的三視圖,若該幾何體的頂點都在一個球面上,則該球的表面積為( 。
A.12πB.24 πC.36πD.48π

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx,$g(x)=-\frac{k}{x},(k≠0)$
(Ⅰ)求曲線y=f(x)在(e,f(e))處的切線方程;
(Ⅱ)求函數(shù)h(x)=f(x)-g(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若對?x∈(-∞,0)∪(0,+∞)都有f(|x|)≥g(|x|)成立,試確定實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{3}$x3-2x的單調(diào)遞增區(qū)間為(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

8.設(shè)f(x)是定義在R上的增函數(shù),其導函數(shù)為f′(x),且滿足f(x)+f′(x)(x-1)<0,下面不等式正確的是( 。
A.f(x2)<f(x-1)B.(x-1)f(x)<xf(x+1)C.f(x)>x-1D.f(x)<0

查看答案和解析>>

科目: 來源: 題型:選擇題

7.執(zhí)行如圖的程序框圖,則輸出的n等于(  )
A.5B.6C.7D.8

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義在R上的奇函數(shù),其導函數(shù)為f′(x),且x<0時,xf′(x)-2f(x)>0恒成立,設(shè)f(1)=a,f(2)=4b,f(3)=9c,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.a<b<cC.b<a<cD.b>a>c

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知y=f(x)的導函數(shù)f′(x)的圖象如圖所示,則下列結(jié)論正確的是( 。
A.f(x)在(-3,-1)上先增后減B.x=-2是函數(shù)f(x)極小值點
C.f(x)在(-1,1)上是增函數(shù)D.x=1是函數(shù)f(x)的極大值點

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)在R上的導函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e${\;}^{\frac{x}{2}}$的解集是( 。
A.(ln2,+∞)B.(2ln2,+∞)C.(-∞,ln2)D.(-∞,2ln2)

查看答案和解析>>

科目: 來源: 題型:解答題

3.甲乙兩家快餐店對某日7個時段來店光臨的客人人數(shù)進行統(tǒng)計繪制莖葉圖如圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(1)求a,b的值,并計算乙數(shù)據(jù)的方差;
(2)現(xiàn)從乙數(shù)據(jù)中不高于16的數(shù)據(jù)中隨機抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知函數(shù)f(x)在R上的導函數(shù)為f′(x),若f(x)<f′(x)恒成立,且f(0)=2,則不等式f(x)>2ex的解集是( 。
A.(2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

查看答案和解析>>

同步練習冊答案