相關(guān)習題
 0  229737  229745  229751  229755  229761  229763  229767  229773  229775  229781  229787  229791  229793  229797  229803  229805  229811  229815  229817  229821  229823  229827  229829  229831  229832  229833  229835  229836  229837  229839  229841  229845  229847  229851  229853  229857  229863  229865  229871  229875  229877  229881  229887  229893  229895  229901  229905  229907  229913  229917  229923  229931  266669 

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=ex+ax2-2ax-1.
(Ⅰ)當a=$\frac{1}{2}$時,討論f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)g(x)=f′(x),討論g(x)的零點個數(shù);若存在零點,請求出所有的零點或給出每個零點所在的有窮區(qū)間,并說明理由(注:有窮區(qū)間指區(qū)間的端點不含有-∞和+∞的區(qū)間).

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知$f(x)=\frac{{{e^{ax}}}}{x}$(其中e=2.718…).
(1)若f(x)在(0,4]上是減函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求函數(shù)f(x)在[m,m+2](m>0)上的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

18.函數(shù)f(x)=x3+$\frac{3}{x}$在(0,+∞)上的最小值是4.

查看答案和解析>>

科目: 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ln x+$\frac{m}{x}$,m∈R.
(1)當m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值;
(2)當m為何值時,g(x)=f′(x)-$\frac{x}{3}$有且只有一個零點;
(3)若對任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖所示的幾何體由平面PECF截棱長為2的正方體得到,其中P、C為原正方體的頂點,E、F為原正方體側(cè)棱的中點,正方形ABCD為原正方體的底面,點G為線段BC上的動點.
(1)求證:平面APC⊥平面PECF;
(2)設(shè)$\overrightarrow{BG}$=λ$\overrightarrow{BC}$,AB與平面EFG所成的角為θ,當θ∈($\frac{π}{6}$,$\frac{π}{4}$)時,求λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)$f(x)=lnx-\frac{a}{x}+1$
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)<x2+1在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.直線x-4y+1=0經(jīng)過拋物線y=ax2的焦點,且此拋物線上存在一點P,使PA⊥PB,其中,A(0,2+m),B(0,2-m),則正數(shù)m的最小值為( 。
A.$\sqrt{7}$B.$\sqrt{5}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,則a的取值范圍是( 。
A.[e,+∞)B.$[\frac{e^2}{2},+∞)$C.$[\frac{e^2}{2},{e^2})$D.[e2,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=alnx(a>0),e為自然對數(shù)的底數(shù).
(1)若過點A(2,f(2))的切線斜率為2,求實數(shù)a的值;
(2)關(guān)于x的不等式$\frac{f(x)}{x-1}>1$在區(qū)間(1,e)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知函數(shù)f(x)=ax-lnx,g(x)=ex-ax,其中a為正實數(shù),若f(x)在(1,+∞)上無最小值,且g(x)在(1,+∞)上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為[1,e].

查看答案和解析>>

同步練習冊答案