相關(guān)習(xí)題
 0  229892  229900  229906  229910  229916  229918  229922  229928  229930  229936  229942  229946  229948  229952  229958  229960  229966  229970  229972  229976  229978  229982  229984  229986  229987  229988  229990  229991  229992  229994  229996  230000  230002  230006  230008  230012  230018  230020  230026  230030  230032  230036  230042  230048  230050  230056  230060  230062  230068  230072  230078  230086  266669 

科目: 來源: 題型:選擇題

20.焦點(diǎn)在x軸上,且焦點(diǎn)到準(zhǔn)線的距離是2的拋物線的標(biāo)準(zhǔn)方程是( 。
A.y2=8x或y2=-8xB.x2=8y或x=-8yC.x2=4y或x2=-4yD.y2=4x或y2=-4x

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}}$),x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\frac{π}{8}$,$\frac{3π}{4}}$]上的最值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.求滿足下列條件的圓的方程:
(1)過三點(diǎn)A(5,1),B(7,-3),C(2,8)的圓;
(2)過點(diǎn)A(1,-1)、B(-1,1)且圓心在直線x+y-2=0上的圓的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

17.給出下列命題:
①存在實(shí)數(shù)α,使sinα•cosα=1;
②若函數(shù)y=$\frac{1}{2}$sin(2x-φ+$\frac{π}{4}}$)為偶函數(shù),則φ=-$\frac{π}{4}$-kπ,k∈Z;
③x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5π}{4}}$)的一條對(duì)稱軸方程;
④若α,β是第一象限角,且α>β,則sinα>sinβ;
⑤過點(diǎn)P(-1,6)且與圓(x+3)2+(y-2)2=4相切的直線方程是3x-4y-27=0;
⑥過原點(diǎn)O作圓x2+y2-8x=0的弦OA,則弦OA的中點(diǎn)N的軌跡方程為x2+y2-4x=0,
其中正確的命題是②③.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知tan($\frac{π}{4}$+θ)=3,則$\frac{6sinθ-cosθ}{cosθ+2sinθ}$=1.

查看答案和解析>>

科目: 來源: 題型:填空題

15.角α的終邊經(jīng)過點(diǎn)(4,3),角β的終邊經(jīng)過點(diǎn)(-7,-1),則sin(α+β)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.函數(shù)y=Asin(ωx+ϕ)(ω>0,|ϕ|<$\frac{π}{2}$,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為(  )
A.y=sin(2x+$\frac{π}{3}}$)B.y=sin(2x-$\frac{π}{6}}$)C.y=cos(4x-$\frac{π}{3}}$)D.y=cos(2x+$\frac{π}{3}}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

13.tan240°+sin(-420°)的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{3\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在三棱錐V-ABC中,三角形VAB為等邊三角形,AC⊥BC,且AC=BC=$\sqrt{2}$,VC=2,點(diǎn)O,M分別為AB,VA的中點(diǎn).
(1)證明:VB∥平面MOC;   
(2)求三棱錐V-ABC的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-n,數(shù)列{bn}的前n項(xiàng)和Tn=4-bn
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{1}{2}$an•bn,求數(shù)列{cn}的前n項(xiàng)和Rn的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案