相關(guān)習題
 0  231913  231921  231927  231931  231937  231939  231943  231949  231951  231957  231963  231967  231969  231973  231979  231981  231987  231991  231993  231997  231999  232003  232005  232007  232008  232009  232011  232012  232013  232015  232017  232021  232023  232027  232029  232033  232039  232041  232047  232051  232053  232057  232063  232069  232071  232077  232081  232083  232089  232093  232099  232107  266669 

科目: 來源: 題型:選擇題

17.設(shè)a=log${\;}_{\frac{1}{2}}$3,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知$π<α<2π,cos(α-9π)=-\frac{3}{5},求cos(α-\frac{11π}{2})$的值(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.命題“?x<0,2x>0”的否定是( 。
A.?x<0,2x≤0B.?x>0,2x≤0C.?x<0,2x>0D.?x<0,2x≤0

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則“f1(x0,y0)=f2(x0,y0)”是“點M(x0,y0)是曲線C1與C2的交點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,則$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目: 來源: 題型:選擇題

12.下列說法中錯誤的是( 。
A.采用系統(tǒng)抽樣法從某班按學號抽取5名同學參加活動,學號為4,15,26,37,48的同學均被選出,則該班學生人數(shù)可能為55
B.“x<0”是“l(fā)n(x+1)<0”的必要不充分條件
C.“?x≥2,x2-3x+2≥0”的否定是?x<2,x2-3x+2<0
D.x<3是-1<x<3的必要不充分條件

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)左、右焦點分別為F1,F(xiàn)2,過F2的直線交雙曲線C的右支于A,B兩點,如果|AF1|=3a,|BF1|=5a,則此雙曲線的漸近線方程為y=$±\frac{{\sqrt{6}}}{2}$x.

查看答案和解析>>

科目: 來源: 題型:填空題

10.化簡$\frac{tan12°-\sqrt{3}}{sin12°cos24°}$=-8.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=loga$\frac{1-mx}{x-1}$(a>0,a≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)當x∈(n,a-2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)a與n的值;
(3)設(shè)函數(shù)g(x)=-ax2+8(x-1)af(x)-5,a≥8時,存在最大實數(shù)t,使得x∈(1,t]時-5≤g(x)≤5恒成立,請寫出t與a的關(guān)系式.

查看答案和解析>>

科目: 來源: 題型:解答題

8.若sin α=$\frac{\sqrt{5}}{5}$,sin β=$\frac{\sqrt{10}}{10}$,且α,β均為鈍角,求cos(α+β)的值以及α+β的值.

查看答案和解析>>

同步練習冊答案