相關(guān)習題
 0  232528  232536  232542  232546  232552  232554  232558  232564  232566  232572  232578  232582  232584  232588  232594  232596  232602  232606  232608  232612  232614  232618  232620  232622  232623  232624  232626  232627  232628  232630  232632  232636  232638  232642  232644  232648  232654  232656  232662  232666  232668  232672  232678  232684  232686  232692  232696  232698  232704  232708  232714  232722  266669 

科目: 來源: 題型:解答題

19.如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD,若E,F(xiàn)分別為PC,BD的中點.
(1)求證:EF∥平面PAD;
(2)求證:平面PDC⊥平面PAD;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖所示,在三棱柱ABC-A1B1C1中,底面△ABC是邊長為6的等邊三角形,點A1
在底面△ABC內(nèi)的射影為△ABC的中心O,D,E分別為A1B1,BC的中點.
(Ⅰ)求證:DE∥平面ACC1A1;
(Ⅱ)若AA1=4$\sqrt{3}$,求四棱錐A1-CBB1C1的表面積.

查看答案和解析>>

科目: 來源: 題型:解答題

17.在某項娛樂活動的海選過程中評分人員需對同批次的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰成績在(40,60)內(nèi)的選手可以參加復活賽,如果通過,也可以參加第二輪比賽.
(Ⅰ)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,估計這200名參賽選手成績的平均數(shù)和中位數(shù);
(Ⅱ)現(xiàn)有6名選手的海選成績分別為(單位:分)43,45,52,53,58,59,經(jīng)過復活賽后,有二名選手進入到第二輪比賽,求這2名選手的海選成績均在(50,60)的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$,$\overrightarrow$的夾角為30°,($\overrightarrow{a}$+2$\overrightarrow$)∥(2$\overrightarrow{a}$+λ$\overrightarrow$),則(($\overrightarrow{a}$+λ$\overrightarrow$))•($\overrightarrow{a}$-$\overrightarrow$)=1.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知函數(shù)f(x)=lg(1-$\frac{a}{2^x}$)的定義域為(4,+∞),則a=16.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知點$D(1,\sqrt{2})$在雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$上,且雙曲線的一條漸近線的方程是$\sqrt{3}x+y=0$.(1)求雙曲線C的方程;
(2)過點(0,1)且斜率為k的直線l與雙曲線C交于A、B兩個不同點,若以線段AB為直徑的圓恰好經(jīng)過坐標原點,求實數(shù)k的值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.為評估設備M生產(chǎn)某種零件的性能,從設備M生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/mm5859616263646566676868707173合計
件數(shù)11356193318442121100
經(jīng)計算,樣本的平均值μ=65,標準差σ=2.2,以頻率值作為概率的估計值.
(Ⅰ)為評判一臺設備的性能,從該設備加工的零件中任意抽取一件,記其直徑為X,并根據(jù)以下不等式進行評判(P表示相應事件的概率):①P(μ-σ<X≤μ+σ)≥0.6826;②P(μ-2σ<X≤μ+2σ)≥0.9544;③P(μ-3σ<X≤μ+3σ)≥0.9974.評判規(guī)則為:若同時滿足上述三個不等式,則設備等級為甲;若僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部都不滿足,則等級為。嚺袛嘣O備M的性能等級.
(Ⅱ)將直徑小于等于μ-2σ或直徑大于μ+2σ的零件認為是次品.
(i)從設備M的生產(chǎn)流水線上隨意抽取2件零件,計算其中次品個數(shù)Y的數(shù)學期望EY;
(ii)從樣本中隨意抽取2件零件,計算其中次品個數(shù)Z的數(shù)學期望EZ.

查看答案和解析>>

科目: 來源: 題型:解答題

12.設函數(shù)f(x)的定義域為R,若存在常數(shù)m>0,使|f(x)|≤m|x|對一切實數(shù)x均成立,則稱f(x)為F函數(shù).給出下列函數(shù):①f(x)=0;②f(x)=2x;③f(x)=$\sqrt{2}$(sinx+cosx); ④f(x)=$\frac{x}{{x}^{2}+x+1}$;你認為上述四個函數(shù)中,哪幾個是F函數(shù),請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.對于函數(shù)f1(x)、f2(x)、h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x)、f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x)、f2(x)的生成函數(shù)?并說明理由;
第一組:f1(x)=sinx,f2(x)=cosx,$h(x)=sin(x+\frac{π}{3})$
第二組:${f_1}(x)={x^2}-x$,${f_2}(x)={x^2}+x+1$,h(x)=x2-x+1;
(2)設f1(x)=log2x,${f_2}(x)={log_{\frac{1}{2}}}x$,a=2,b=1,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;
(3)設f1(x)=x(x>0),${f_2}(x)=\frac{1}{x}(x>0)$,取a>0,b>0,生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2,且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

10.設集合$\{\frac{3}{a}+b|1≤a≤b≤2\}$中的最大元素與最小元素分別為M,m,則M-m的值為5-2$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案