相關習題
 0  264787  264795  264801  264805  264811  264813  264817  264823  264825  264831  264837  264841  264843  264847  264853  264855  264861  264865  264867  264871  264873  264877  264879  264881  264882  264883  264885  264886  264887  264889  264891  264895  264897  264901  264903  264907  264913  264915  264921  264925  264927  264931  264937  264943  264945  264951  264955  264957  264963  264967  264973  264981  266669 

科目: 來源: 題型:

【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔仔細算相還”,其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,則該人第五天走的路程為(

A. 6B. 12C. 24D. 48

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線恰有一個公共點.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.

(1)證明:平面平面;

(2)若為線段的中點,求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機選取了名用戶,統(tǒng)計出年齡分布和用戶付費金額(金額為整數(shù))情況如下圖.

有聲書公司將付費高于元的用戶定義為“愛付費用戶”,將年齡在歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有的“年輕用戶”是“愛付費用戶”.

(1)完成下面的列聯(lián)表,并據(jù)此資料,能否有的把握認為用戶“愛付費”與其為“年輕用戶”有關?

愛付費用戶

不愛付費用戶

合計

年輕用戶

非年輕用戶

合計

(2)若公司采用分層抽樣方法從“愛付費用戶”中隨機選取人,再從這人中隨機抽取人進行訪談,求抽取的人恰好都是“年輕用戶”的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】

甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為.

)求乙投球的命中率;

)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】設函數(shù),).

(1)當時,上是單調遞增函數(shù),求的取值范圍;

(2)當時,討論函數(shù)的單調區(qū)間;

(3)對于任意給定的正實數(shù),證明:存在實數(shù),使得

查看答案和解析>>

科目: 來源: 題型:

【題目】設常數(shù),函數(shù)

(1)當時,判斷上單調性,并加以證明;

(2)當時,研究的奇偶性,并說明理由;

(3)當時,若存在區(qū)間使得上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線焦點為,直線與拋物線交于兩點.到準線的距離之和最小為8.

1)求拋物線方程;

2)若拋物線上一點縱坐標為,直線分別交準線于.求證:以為直徑的圓過焦點.

查看答案和解析>>

科目: 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,小王同學發(fā)現(xiàn),每個國家在疫情發(fā)生的初期,由于認識不足和措施不到位,感染人數(shù)都會出現(xiàn)快速的增長.下表是小王同學記錄的某國連續(xù)8天每日新型冠狀病毒感染確診的累計人數(shù).

日期代碼

1

2

3

4

5

6

7

8

累計確診人數(shù)

4

8

16

31

51

71

97

122

為了分析該國累計感染人數(shù)的變化趨勢,小王同學分別用兩種模型:①,②對變量的關系進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差):經(jīng)過計算得,,,其中,.

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由;

2)根據(jù)(1)問選定的模型求出相應的回歸方程(系數(shù)均保留一位小數(shù));

3)由于時差,該國截止第9天新型冠狀病毒感染確診的累計人數(shù)尚未公布.小王同學認為,如果防疫形勢沒有得到明顯改善,在數(shù)據(jù)公布之前可以根據(jù)他在(2)問求出的回歸方程來對感染人數(shù)作出預測,那么估計該地區(qū)第9天新型冠狀病毒感染確診的累計人數(shù)是多少.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

同步練習冊答案