0  444356  444364  444370  444374  444380  444382  444386  444392  444394  444400  444406  444410  444412  444416  444422  444424  444430  444434  444436  444440  444442  444446  444448  444450  444451  444452  444454  444455  444456  444458  444460  444464  444466  444470  444472  444476  444482  444484  444490  444494  444496  444500  444506  444512  444514  444520  444524  444526  444532  444536  444542  444550  447090 

1.下列在廚房中發(fā)生的變化是物理變化的是

A.榨取果汁       B.冬瓜腐爛     C.鐵鍋生銹      D.煤氣燃燒

試題詳情

29.問題解決

解:方法一:如圖(1-1),連接

 

    由題設(shè),得四邊形和四邊形關(guān)于直線對(duì)稱.

    ∴垂直平分.∴··········································· 1分

    ∵四邊形是正方形,∴

    ∵設(shè)

     在中,

    ∴解得,即················································ 3分

    在和在中,

,

······································································· 5分

    設(shè)

    解得················································································· 6分

    ∴··································································································· 7分

    方法二:同方法一,········································································· 3分

    如圖(1-2),過點(diǎn)于點(diǎn),連接

 

∴四邊形是平行四邊形.

    ∴

    同理,四邊形也是平行四邊形.∴

  ∵

  

  在

  ····························· 5分

······························································ 6分

································································································· 7分

類比歸納

(或);; ·········································································· 10分

聯(lián)系拓廣

···································································································· 12分

試題詳情

26.(1)解:由點(diǎn)坐標(biāo)為

點(diǎn)坐標(biāo)為

··················································································· (2分)

解得點(diǎn)的坐標(biāo)為···································· (3分)

··························································· (4分)

  (2)解:∵點(diǎn)上且

       ∴點(diǎn)坐標(biāo)為······················································································ (5分)

又∵點(diǎn)上且

點(diǎn)坐標(biāo)為······················································································ (6分)

··········································································· (7分)

  (3)解法一:當(dāng)時(shí),如圖1,矩形重疊部分為五邊形(時(shí),為四邊形).過,則

 

··································································· (10分)

(2009年山西省太原市)29.(本小題滿分12分)

問題解決

如圖(1),將正方形紙片折疊,使點(diǎn)落在邊上一點(diǎn)(不與點(diǎn),重合),壓平后得到折痕.當(dāng)時(shí),求的值.

 

類比歸納

在圖(1)中,若的值等于     ;若的值等于     ;若(為整數(shù)),則的值等于     .(用含的式子表示)

聯(lián)系拓廣

  如圖(2),將矩形紙片折疊,使點(diǎn)落在邊上一點(diǎn)(不與點(diǎn)重合),壓平后得到折痕設(shè)的值等于     .(用含的式子表示)

 

試題詳情

26.(2009年山西省)(本題14分)如圖,已知直線與直線相交于點(diǎn)分別交軸于兩點(diǎn).矩形的頂點(diǎn)分別在直線上,頂點(diǎn)都在軸上,且點(diǎn)與點(diǎn)重合.

   (1)求的面積;

(2)求矩形的邊的長;

(3)若矩形從原點(diǎn)出發(fā),沿軸的反方向以每秒1個(gè)單位長度的速度平移,設(shè)

移動(dòng)時(shí)間為秒,矩形重疊部分的面積為,求關(guān)

的函數(shù)關(guān)系式,并寫出相應(yīng)的的取值范圍.

試題詳情

23.(2009年河南省)(11分)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bxA、C兩點(diǎn).  

(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;

   (2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD

向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)PPEABAC于點(diǎn)E

   ①過點(diǎn)EEFAD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長?

②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?

請(qǐng)直接寫出相應(yīng)的t值.

解.(1)點(diǎn)A的坐標(biāo)為(4,8)         …………………1分

將A  (4,8)、C(8,0)兩點(diǎn)坐標(biāo)分別代入y=ax2+bx

       8=16a+4b

     得             

     0=64a+8b

     解 得a=-,b=4

∴拋物線的解析式為:y=-x2+4x      …………………3分

(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=

PE=AP=t.PB=8-t

∴點(diǎn)E的坐標(biāo)為(4+t,8-t).

∴點(diǎn)G的縱坐標(biāo)為:-(4+t)2+4(4+t)=-t2+8. …………………5分

∴EG=-t2+8-(8-t)

   =-t2+t.

∵-<0,∴當(dāng)t=4時(shí),線段EG最長為2.       …………………7分

②共有三個(gè)時(shí)刻.                  …………………8分

t1=,  t2=t3= .          …………………11分

試題詳情

26.解:(1)1,

(2)作QFAC于點(diǎn)F,如圖3, AQ = CP= t,∴

由△AQF∽△ABC,

.∴

(3)能.

  ①當(dāng)DEQB時(shí),如圖4.

  ∵DEPQ,∴PQQB,四邊形QBED是直角梯形.

   此時(shí)∠AQP=90°.

由△APQ ∽△ABC,得,

. 解得

②如圖5,當(dāng)PQBC時(shí),DEBC,四邊形QBED是直角梯形.

此時(shí)∠APQ =90°.

由△AQP ∽△ABC,得

. 解得.                                                

(4)

[注:①點(diǎn)PCA運(yùn)動(dòng),DE經(jīng)過點(diǎn)C

方法一、連接QC,作QGBC于點(diǎn)G,如圖6.

,得,解得

方法二、由,得,進(jìn)而可得

,得,∴.∴

②點(diǎn)PAC運(yùn)動(dòng),DE經(jīng)過點(diǎn)C,如圖7.

]

試題詳情

26.(2009年河北省)(本小題滿分12分)

如圖16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.點(diǎn)P從點(diǎn)C出發(fā)沿CA以每秒1個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后立刻以原來的速度沿AC返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng).伴隨著PQ的運(yùn)動(dòng),DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB-BC-CP于點(diǎn)E.點(diǎn)PQ同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).

(1)當(dāng)t = 2時(shí),AP =    ,點(diǎn)QAC的距離是   

(2)在點(diǎn)PCA運(yùn)動(dòng)的過程中,求△APQ的面積S

t的函數(shù)關(guān)系式;(不必寫出t的取值范圍)

(3)在點(diǎn)EBC運(yùn)動(dòng)的過程中,四邊形QBED能否成

為直角梯形?若能,求t的值.若不能,請(qǐng)說明理由;

(4)當(dāng)DE經(jīng)過點(diǎn)C 時(shí),請(qǐng)直接寫出t的值.

試題詳情

26.解:(1)由已知,得,

,

.············································································································ (1分)

設(shè)過點(diǎn)的拋物線的解析式為

將點(diǎn)的坐標(biāo)代入,得

和點(diǎn)的坐標(biāo)分別代入,得

··································································································· (2分)

解這個(gè)方程組,得

故拋物線的解析式為.··························································· (3分)

(2)成立.························································································· (4分)

點(diǎn)在該拋物線上,且它的橫坐標(biāo)為

點(diǎn)的縱坐標(biāo)為.······················································································· (5分)

設(shè)的解析式為,

將點(diǎn)的坐標(biāo)分別代入,得

  解得

的解析式為.········································································ (6分)

,.··························································································· (7分)

過點(diǎn)于點(diǎn)

,

.··········································································································· (8分)

(3)點(diǎn)上,,則設(shè)

,

①若,則,

解得,此時(shí)點(diǎn)與點(diǎn)重合.

.··········································································································· (9分)

②若,則

解得 ,,此時(shí)軸.

與該拋物線在第一象限內(nèi)的交點(diǎn)的橫坐標(biāo)為1,

點(diǎn)的縱坐標(biāo)為

.······································································································· (10分)

③若,則

解得,,此時(shí),是等腰直角三角形.

過點(diǎn)軸于點(diǎn),

,設(shè)

解得(舍去).

.··········································· (12分)

綜上所述,存在三個(gè)滿足條件的點(diǎn)

(2009年重慶綦江縣)26.(11分)如圖,已知拋物線經(jīng)過點(diǎn),拋物線的頂點(diǎn)為,過作射線.過頂點(diǎn)平行于軸的直線交射線于點(diǎn)軸正半軸上,連結(jié)

(1)求該拋物線的解析式;

(2)若動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)長度單位的速度沿射線運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.問當(dāng)為何值時(shí),四邊形分別為平行四邊形?直角梯形?等腰梯形?

(3)若,動(dòng)點(diǎn)和動(dòng)點(diǎn)分別從點(diǎn)和點(diǎn)同時(shí)出發(fā),分別以每秒1個(gè)長度單位和2個(gè)長度單位的速度沿運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為,連接,當(dāng)為何值時(shí),四邊形的面積最?并求出最小值及此時(shí)的長.

*26.解:(1)拋物線經(jīng)過點(diǎn),

·························································································· 1分

二次函數(shù)的解析式為:·················································· 3分

(2)為拋物線的頂點(diǎn),則,

··················································· 4分

當(dāng)時(shí),四邊形是平行四邊形

················································ 5分

當(dāng)時(shí),四邊形是直角梯形

(如果沒求出可由)

····························································································· 6分

當(dāng)時(shí),四邊形是等腰梯形

綜上所述:當(dāng)、5、4時(shí),對(duì)應(yīng)四邊形分別是平行四邊形、直角梯形、等腰梯形.·· 7分

(3)由(2)及已知,是等邊三角形

,則········································································· 8分

=·································································································· 9分

當(dāng)時(shí),的面積最小值為··································································· 10分

此時(shí)

······················································ 11分

試題詳情

26.(2009年重慶市)已知:如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OAy軸的正半軸上,OCx軸的正半軸上,OA=2,OC=3.過原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過點(diǎn)DDEDC,交OA于點(diǎn)E

(1)求過點(diǎn)E、DC的拋物線的解析式;

(2)將∠EDC繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G.如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;

(3)對(duì)于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQAB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

 

試題詳情

25.(2009年北京)如圖,在平面直角坐標(biāo)系中,三個(gè)機(jī)戰(zhàn)的坐標(biāo)分別為

,,延長AC到點(diǎn)D,使CD=,過點(diǎn)D作DE∥AB交BC的延長線于點(diǎn)E.

(1)求D點(diǎn)的坐標(biāo);

(2)作C點(diǎn)關(guān)于直線DE的對(duì)稱點(diǎn)F,分別連結(jié)DF、EF,若過B點(diǎn)的直線將四邊形CDFE分成周長相等的兩個(gè)四邊形,確定此直線的解析式;

(3)設(shè)G為y軸上一點(diǎn),點(diǎn)P從直線與y軸的交點(diǎn)出發(fā),先沿y軸到達(dá)G點(diǎn),再沿GA到達(dá)A點(diǎn),若P點(diǎn)在y軸上運(yùn)動(dòng)的速度是它在直線GA上運(yùn)動(dòng)速度的2倍,試確定G點(diǎn)的位置,使P點(diǎn)按照上述要求到達(dá)A點(diǎn)所用的時(shí)間最短。(要求:簡述確定G點(diǎn)位置的方法,但不要求證明)

試題詳情


同步練習(xí)冊(cè)答案