11.直線L的方程為-Ax-By+C=0,若直線L過(guò)原點(diǎn)和一、三象限,則( 。
A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0D.C=0,AB>0

分析 直線過(guò)原點(diǎn)得到C=0,直線過(guò)一、三象限得到斜率大于0,從而求出答案.

解答 解:∵直線L的方程為-Ax-By+C=0,
若直線L過(guò)原點(diǎn)和一、三象限,
則AB<0,C=0,
故選:C.

點(diǎn)評(píng) 本題考查了直線方程問(wèn)題,考查直線的斜率,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.把函數(shù)y=cos2x+$\sqrt{3}$sin2x的圖象向左平移m(其中m>0)個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則m的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-2,則實(shí)數(shù)m的值為( 。
A.±2B.±4C.-4或0D.0或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=1,則$\overrightarrow{a}$和$\overrightarrow$夾角大小為(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(0,1),$\overrightarrow$=(-1,m),$\overrightarrow{c}$=(1,2),若($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow{c}$,則m=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,直線AB的方程為3x-2y-1=0,直線AC的方程為2x+3y-18=0.直線BC的方程為3x+4y-m=0(m≠25).
(1)求證:△ABC為直角三角形;
(2)當(dāng)△ABC的BC邊上的高為1時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)有如表幾組樣本數(shù)據(jù):
 x 3 4 5 6
 y 2.5 3 m 4.5
據(jù)相關(guān)性檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,求得其回歸方程是$\stackrel{∧}{y}$=0.7x+0.35,則實(shí)數(shù)m的值為  ( 。
A.3.5B.3.85C.4D.4.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}-1,x<1\\-\frac{1}{2},x=1\\ 1+{log_{\frac{1}{2}}}x,x>1\end{array}\right.$,g(x)=f(x)-k,k為常數(shù),給出下列四種說(shuō)法:
①f(x)的值域是(-∞,1];
 ②當(dāng)$k=-\frac{1}{2}$時(shí),g(x)的所有零點(diǎn)之和等于$2\sqrt{2}$;
③當(dāng)k≤-1時(shí),g(x)有且僅有一個(gè)零點(diǎn);  
④f(x+1)是偶函數(shù).
其中正確的是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已數(shù)列的前n項(xiàng)和為Sn,且滿Sn-1-Sn=2Sn•Sn-1(n∈N*,n≥2),a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{S}_{n}}$,Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,若Tn<2m-1對(duì)任意的正整數(shù)恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案