15.已知sin(π+α)=$\frac{1}{3}$,則sin(-3π+α)=$\frac{1}{3}$.

分析 由條件利用誘導(dǎo)公式求得結(jié)果.

解答 解:∵sin(π+α)=$\frac{1}{3}$=-sinα,則sin(-3π+α)=-sinα=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評 本題主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓${Γ_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,其離心率為$\frac{1}{2}$;拋物線${Γ_2}:{y^2}=-4{a^2}x$的焦點(diǎn)F到準(zhǔn)線l的距離為8,H是準(zhǔn)線l上的點(diǎn).
(1)求橢圓Γ1、拋物線Γ2的方程;
(2)過點(diǎn)F的直線交橢圓Γ1于P,Q兩點(diǎn),設(shè)直線F2H,PH,QH的斜率分別為k1,k2,k3,探究:是否存在k1,k2,k3的一個排列(如“k3,k1,k2”,“k1,k3,k2”等),使得這個排列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線y2=2px(p>0)的焦點(diǎn)F與雙曲線$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的一個焦點(diǎn)重合,直線y=x-4與拋物線交于A,B兩點(diǎn),則|AB|等于(  )
A.28B.32C.20D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=x,b=2,B=60°,如果解此三角形有且只有兩個解,則x的取值范圍是$({2,\frac{{4\sqrt{3}}}{3}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=x3-6bx+3b在(0,1)內(nèi)有最小值,則實(shí)數(shù)b的取值范圍(  )
A.(0,1)B.(-∞,1)C.(0,+∞)D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對某校高二年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如圖:
分組頻數(shù)頻率
[10,15)mp
[15,20)24n
[20,25)40.1
[25,30)20.05
合計(jì)M1
(1)若已知M=40,求出表中m、n、p中及圖中a的值;
(2)若該校高二學(xué)生有240人,試估計(jì)該校高二學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下面有5個命題:
①函數(shù)y=sin2x的最小正周期是π.
②若α為第二象限角,則$\frac{α}{3}$在一、三、四象限;
③在同一坐標(biāo)系中,函數(shù)y=sin x的圖象和函數(shù)y=x的圖象有3個公共點(diǎn).
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù).
其中,真命題的編號是①④.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的各項(xiàng)均為正數(shù),觀察程序框圖,若k=5,k=10時,分別有S=$\frac{5}{11}$和S=$\frac{10}{21}$.
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x+xlnx,若a∈Z,且直線y=ax在曲線y=f(x+1)的下方,則a的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案