分析 先驗(yàn)證n=1時(shí)結(jié)論成立,再假設(shè)n=k結(jié)論成立,驗(yàn)證n=k+1時(shí)是否成立即可.
解答 解:證明 (1)當(dāng)n=1時(shí),左邊=$\frac{1}{1×3}$=$\frac{1}{3}$,
右邊=$\frac{1}{2×1+1}$=$\frac{1}{3}$,左邊=右邊,
所以等式成立.
(2)假設(shè)n=k(k∈N+)時(shí)等式成立,即有$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2k-1)(2k+1)}$=$\frac{k}{2k+1}$,
則當(dāng)n=k+1時(shí),
$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2k-1)(2k+1)}$+$\frac{1}{(2k+1)(2k+3)}$
=$\frac{k}{2k+1}$+$\frac{1}{(2k+1)(2k+3)}$=$\frac{k(2k+3)+1}{(2k+1)(2k+3)}$
=$\frac{{2{k^2}+3k+1}}{(2k+1)(2k+3)}$
=$\frac{(k+1)(2k+1)}{(2k+1)(2k+3)}$
=$\frac{k+1}{2k+3}$
=$\frac{k+1}{2(k+1)+1}$,
所以當(dāng)n=k+1時(shí),等式也成立.
由(1)(2)可知,對(duì)一切n∈N+等式都成立.
點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法證明,掌握證明步驟是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±1 | B. | 9 | C. | -9 | D. | ±9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,5] | B. | [1,4) | C. | (0,5] | D. | [-1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com