分析 首先,$\frac{3sinα-cosα}{2sinα+3cosα}$的分子、分母同時除以cosα,并求得tanα=2.
(1)利用同角三角函數關系的關系來求tan($\frac{π}{2}$-α)的值;
(2)利用誘導公式,同角三角函數關系進行解答.
解答 解:∵$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{5}{7}$,
∴$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{3tanα-1}{2tanα+3}$=$\frac{5}{7}$.
解得,tanα=2.
(1)tan($\frac{π}{2}$-α)=cotα=$\frac{1}{tanα}$=$\frac{1}{2}$;
(2)原式=$\frac{3cosα•(-sinα)+2si{n}^{2}α}{si{n}^{2}α+co{s}^{2}α}$,
=$\frac{-3tanα+2ta{n}^{2}α}{1+ta{n}^{2}α}$,
=$\frac{-3×2+2×{2}^{2}}{1+{2}^{2}}$,
=$\frac{2}{5}$.
點評 本題主要考查三角函數的化簡求值,三角函數中的恒等變換應用,利用三角函數公式將函數進行化簡是解決本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | -2或6 | B. | 0或4 | C. | -1 或$\sqrt{3}$ | D. | -1或3 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 無極值點 | B. | 極大值點是$\frac{1}{e}$ | ||
C. | 既有極大值點又有極小值點 | D. | 極小值點是$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
性別 專業(yè) | 非統(tǒng)計專業(yè) | 統(tǒng)計專業(yè) |
男 | 15 | 10 |
女 | 5 | 20 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y′=3sin$\frac{1}{2}$x′ | B. | y′=$\frac{1}{3}$sin2x′ | C. | y′=$\frac{1}{2}$sin2x′ | D. | y′=3sin2x′ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com