科目: 來源: 題型:
【題目】已知常數(shù),數(shù)列的前項和為, , ;
(1)求數(shù)列的通項公式;
(2)若,且是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;
(3)若, ,對于任意給定的正整數(shù),是否存在正整數(shù)、,使得?若存在,求出、的值(只要寫出一組即可);若不存在,請說明理由;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.
(1)求證:PA∥平面QBC;
(2)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標(biāo)價的八折出售,折后價格每滿500元再減100元.如某商品標(biāo)價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實際折扣率.設(shè)某商品標(biāo)價為元,購買該商品得到的實際折扣率為.
(Ⅰ)寫出當(dāng)時, 關(guān)于的函數(shù)解析式,并求出購買標(biāo)價為1000元商品得到的實際折扣率;
(Ⅱ)對于標(biāo)價在[2500,3500]的商品,顧客購買標(biāo)價為多少元的商品,可得到的實際折扣率低于?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù);
(1)當(dāng)時,若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時, ,
求在上的反函數(shù);
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實
數(shù)的取值范圍;
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)是由個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作,其中
稱為數(shù)組的“元”, 稱為的下標(biāo),如果數(shù)組中的每個“元”都是來自數(shù)組
中不同下標(biāo)的“元”,則稱為的子數(shù)組,定義兩個數(shù)組和
的關(guān)系數(shù)為;
(1)若, ,設(shè)是的含有兩個“元”的子數(shù)組,求
的最大值;
(2)若, ,且, 為的含有三個“元”
的子數(shù)組,求的最大值;
(3)若數(shù)組中的“元”滿足,設(shè)數(shù)組 含有
四個“元”,且,求與的所有含有三個“元”
的子數(shù)組的關(guān)系數(shù)的最大值;
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=1,且a2 , a4 , a8成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足:a1b1+a2b2+a3b3+…+anbn=2n+1 , n∈N* , 令cn= ,n∈N* , 求數(shù)列{cncn+1}的前n項和Sn .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知任意角θ以x軸非負(fù)半軸為始邊,若終邊經(jīng)過點P(x0 , y0),且|OP|=r(r>0),定義sicosθ= ,稱“sicosθ”為“正余弦函數(shù)”.對于正余弦函數(shù)y=sicosx,有同學(xué)得到如下結(jié)論: ①該函數(shù)是偶函數(shù);
②該函數(shù)的一個對稱中心是( ,0);
③該函數(shù)的單調(diào)遞減區(qū)間是[2kπ﹣ ,2kπ+ ],k∈Z.
④該函數(shù)的圖象與直線y= 沒有公共點;
以上結(jié)論中,所有正確的序號是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點、、、在圓周上,、在邊上,且,設(shè).
(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;
(2)怎樣設(shè)計才能符合園林局的要求?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com