科目: 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設同一公司送餐員一天的送餐單數相同,現從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數,得到如表頻數表: 甲公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 10 | 20 | 20 | 40 | 10 |
(Ⅰ)現從甲公司記錄的100天中隨機抽取兩天,求這兩天送餐單數都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數學期望;
(ii)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四個結論:
①命題“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
②已知命題p:x∈R,x2+6x+11<0,則p:x∈R,x2+6x+11≥0;
③若命題“p”與命題“p或q”都是真命題,則命題q一定是真命題;
④命題“若0<a<1,則loga(a+1)<log
其中正確結論的序號是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=x3﹣3x+2+m(m>0),在區(qū)間[0,2]上存在三個不同的實數a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數,若在定義域內存在,使得成立,則稱為函數的局部對稱點.
(1)若,證明:函數必有局部對稱點;
(2)若函數在區(qū)間內有局部對稱點,求實數的取值范圍;
(3)若函數在上有局部對稱點,求實數的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四個命題:
①命題“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
②已知命題p:x∈R,x2+x+1<0,則p:x∈R,x2+x+1≥0;
③若命題“p”與命題“p或q”都是真命題,則命題q一定是真命題;
④命題“若0<a<1,則loga(a+1)<lo.
其中正確命題的序號是_____.(把所有正確的命題序號都填上)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線C:x2=4y,過點M(0,2)任作一直線與C相交于A,B兩點,過點B作y軸的平行線與直線AO相交于點D(O為坐標原點).
(1)證明動點D在定直線上;
(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點N1,與(1)中的定直線相交于點N2,證明|MN2|2-|MN1|2為定值,并求此定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com