遼寧省大連23中2009年高考數(shù)學(xué)第二輪復(fù)習(xí)秘笈5:
應(yīng)用型問題
數(shù)學(xué)應(yīng)用性問題是歷年高考命題的主要題型之一, 也是考生失分較多的一種題型. 高考中一般命制一道解答題和兩道選擇填空題.解答這類問題的要害是深刻理解題意,學(xué)會文字語言向數(shù)學(xué)的符號語言的翻譯轉(zhuǎn)化,這就需要建立恰當?shù)臄?shù)學(xué)模型,這當中,函數(shù),數(shù)列,不等式,排列組合是較為常見的模型,而三角,立幾,解幾等模型也應(yīng)在復(fù)課時引起重視.
例1某校有教職員工150人,為了豐富教工的課余生活,每天定時開放健身房和娛樂室。據(jù)調(diào)查統(tǒng)計,每次去健身房的人有10%下次去娛樂室,而在娛樂室的人有20%下次去健身房.請問,隨著時間的推移,去健身房的人數(shù)能否趨于穩(wěn)定?
講解: 引入字母,轉(zhuǎn)化為遞歸數(shù)列模型.
設(shè)第n次去健身房的人數(shù)為an,去娛樂室的人數(shù)為bn,則.
.
,于是
即 .
.故隨著時間的推移,去健身房的人數(shù)穩(wěn)定在100人左右.
上述解法中提煉的模型, 使我們聯(lián)想到了課本典型習(xí)題(代數(shù)下冊P.132第34題)
已知數(shù)列的項滿足
其中,證明這個數(shù)列的通項公式是
有趣的是, 用此模型可以解決許多實際應(yīng)用題, 特別, 2002年全國高考解答題中的應(yīng)用題(下文例9)就屬此類模型.
例2 某人上午7時乘摩托艇以勻速V千米/小時(4≤V≤20)從A港出發(fā)前往50千米處的B港,然后乘汽車以勻速W千米/小時(30≤W≤100)自B港向300千米處的C市駛?cè),在同一天?6時至21時到達C市, 設(shè)汽車、摩托艇所需的時間分別是x小時、y小時,若所需經(jīng)費元,那么V、W分別為多少時,所需經(jīng)費最少?并求出這時所花的經(jīng)費.
講解: 題中已知了字母, 只需要建立不等式和函數(shù)模型進行求解.
由于又
則z最大時P最小.
作出可行域,可知過點(10,4)時, z有最大值38,
∴P有最小值93,這時V=12.5,W=30.
視這是整體思維的具體體現(xiàn), 當中的換元法是數(shù)學(xué)解題的常用方法.
例3 某鐵路指揮部接到預(yù)報,24小時后將有一場超歷史記錄的大暴雨,為確保萬無一失,指揮部決定在24小時內(nèi)筑一道歸時堤壩以防山洪淹沒正在緊張施工的遂道工程。經(jīng)測算,其工程量除現(xiàn)有施工人員連續(xù)奮戰(zhàn)外,還需要20輛翻斗車同時作業(yè)24小時。但是,除了有一輛車可以立即投入施工外,其余車輛需要從各處緊急抽調(diào),每隔20分鐘有一輛車到達并投入施工,而指揮部最多可組織25輛車。問24小時內(nèi)能否完成防洪堤壩工程?并說明理由.
講解: 引入字母, 構(gòu)建等差數(shù)列和不等式模型.
由20輛車同時工作24小時可完成全部工程可知,每輛車,每小時的工作效率為,設(shè)從第一輛車投入施工算起,各車的工作時間為a1,a2,…,
a25小時,依題意它們組成公差(小時)的等差數(shù)列,且
,化簡可得.
解得.
可見a1的工作時間可以滿足要求,即工程可以在24小時內(nèi)完成.
對照此題與2002年全國高考文科數(shù)學(xué)解答題中的應(yīng)用題, 你一定會感覺二者的解法是大同小異的. 學(xué)習(xí)數(shù)學(xué)就需要這種將舊模式中的方法遷移為解答新題的有用工具, 這要求你不斷的聯(lián)想, 力求尋找恰當?shù)慕忸}方案.
例4 某學(xué)校為了教職工的住房問題,計劃征用一塊土地蓋一幢總建筑面積為A(m2)的宿舍樓.已知土地的征用費為2388元/m2,且每層的建筑面積相同,土地的征用面積為第一層的2.5倍.經(jīng)工程技術(shù)人員核算,第一、二層的建筑費用相同都為445元/m2,以后每增高一層,其建筑費用就增加30元/m2.試設(shè)計這幢宿舍樓的樓高層數(shù),使總費用最少,并求出其最少費用.(總費用為建筑費用和征地費用之和).
設(shè)樓高為n層,總費用為y元,則征地面積為,征地費用為元,樓層建筑費用為
試題詳情
[445+445+(445+30)+(445+30×2)+…+445+30×(n-2)]?元,從而
試題詳情
(元)
試題詳情
當且僅當 , n=20(層)時,總費用y最少.
故當這幢宿舍樓的樓高層數(shù)為20層時, 最少總費用為1000A元.
實際應(yīng)用題的數(shù)列模型是近兩年高考命題的熱門話題, 涉及到等差數(shù)列, 等比數(shù)列, 遞歸數(shù)列等知識點, 化歸轉(zhuǎn)化是解答的通性同法.
試題詳情
例5 在一很大的湖岸邊(可視湖岸為直線)停放著一只小船,由于纜繩突然斷開,小船被風(fēng)刮跑,其方向與湖岸成15°角,速度為2.5km/h,同時岸邊有一人,從同一地點開始追趕小船,已知他在岸上跑的速度為4km/h,在水中游的速度為2km/h.,問此人能否追上小船.若小船速度改變,則小船能被人追上的最大速度是多少?
講解: 不妨畫一個圖形,將文字語言翻譯為圖形語言, 進而想法建立數(shù)學(xué)模型.
試題詳情
試題詳情
時間為t,人在岸上跑的時間為,則人在水中游的時間
試題詳情
為,人要追上小船,則人船運動的路線滿足如圖所示的三角形.
試題詳情
由余弦是理得
試題詳情
試題詳情
即
試題詳情
整理得.
試題詳情
要使上式在(0,1)范圍內(nèi)有實數(shù)解,則有且
試題詳情
解得.
試題詳情
故當船速在內(nèi)時,人船運動路線可物成三角形,即人能追上小船,船能使人追上的最大速度為,由此可見當船速為2.5km/h時, 人可以追上小船.
涉及解答三角形的實際應(yīng)用題是近年高考命題的一個冷點, 復(fù)課時值得關(guān)注.
例6 一根水平放置的長方體形枕木的安全負荷與它的寬度a成正比,與它的厚度
d的平方成正比,與它的長度l的平方成反比.
(1)將此枕木翻轉(zhuǎn)90°(即寬度變?yōu)榱撕穸龋砟镜陌踩摵勺兇髥幔繛槭裁矗?/p>
(2)現(xiàn)有一根橫斷面為半圓(半圓的半徑為R)的木材,用它來截取成長方形的枕木,其長度即為枕木規(guī)定的長度,問如何截取,可使安全負荷最大?
試題詳情
試題詳情
講解:(1)安全負荷為正常數(shù)) 翻轉(zhuǎn)
試題詳情
,安全負荷變大.…4分當 ,安全負荷變小.
試題詳情
∵枕木長度不變,∴u=ad2最大時,安全負荷最大.
試題詳情
試題詳情
試題詳情
試題詳情
取時,u最大, 即安全負荷最大. 三次函數(shù)最值問題一般可用三元均值不等式求解, 如果學(xué)過導(dǎo)數(shù)知識, 其解法就更為方便, 省去了應(yīng)用均值不等式時配湊“定和”或“定積”的技巧性. 例7 已知甲、乙、丙三種食物的維生素A、B含量及成本如下表,若用 甲、乙、丙三種食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物 內(nèi)至少含有56000單位維生素A和63000單位維生素B. 甲 乙 丙 維生素A(單位/千克) 600 700 400 維生素B(單位/千克) 800 400 500 成本(元/千克) 11 9 4 (1)用x,y表示混合食物成本c元; (2)確定x,y,z的值,使成本最低.
試題詳情
講解:(1)依題意得 .
試題詳情
(2)由 , 得
試題詳情
,
試題詳情
試題詳情
當且僅當時等號成立., ∴當x=50千克,y=20千克,z=30千克時,混合物成本最低為850元. 線性規(guī)劃是高中數(shù)學(xué)的新增內(nèi)容, 涉及此類問題的求解還可利用圖解法, 試試看.
試題詳情
試題詳情
講解 設(shè)裁員人,可獲得的經(jīng)濟效益為萬元,則
試題詳情
試題詳情
=
試題詳情
依題意 ≥
試題詳情
∴0<≤.
試題詳情
又140<<420, 70<<210.
試題詳情
試題詳情
試題詳情
綜上所述,當70<≤140時,應(yīng)裁員人;當140<<210時,應(yīng)裁員人. 在多字母的數(shù)學(xué)問題當中,分類求解時需要搞清:為什么分類?對誰分類?如何分類? 例9 某城市2001年末汽車保有量為30萬輛,預(yù)計此后每年報廢上一年末汽車保有量的6%,并且每年新增汽車數(shù)量相同.為保護城市環(huán)境,要求該城市汽車保有量不超過60萬輛,那么每年新增汽車數(shù)量不應(yīng)超過多少輛?
試題詳情
試題詳情
,
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
由,得
試題詳情
試題詳情
,
試題詳情
要使對于任意正整數(shù),均有恒成立,
試題詳情
即
試題詳情
對于任意正整數(shù)恒成立,解這個關(guān)于x的一元一次不等式 , 得
試題詳情
,
試題詳情
試題詳情
例10 為促進個人住房商品化的進程,我國1999年元月公布了個人住房公積金貸款利率和商業(yè)性貸款利率如下: 貸款期(年數(shù)) 公積金貸款月利率(‰) 商業(yè)性貸款月利率(‰) …… 11 12 13 14 15 …… …… 4.365 4.455 4.545 4.635 4.725 …… …… 5.025 5.025 5.025 5.025 5.025 ……
汪先生家要購買一套商品房,計劃貸款25萬元,其中公積金貸款10萬元,分十二年還清;商業(yè)貸款15萬元,分十五年還清.每種貸款分別按月等額還款,問:
(1)汪先生家每月應(yīng)還款多少元?
(2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業(yè)貸款也一次性還清;那么他家在這個月的還款總數(shù)是多少?
(參考數(shù)據(jù):1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)
講解 設(shè)月利率為r,每月還款數(shù)為a元,總貸款數(shù)為A元,還款期限為n月
第1月末欠款數(shù) A(1+r)-a
第2月末欠款數(shù) [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
第3月末欠款數(shù) [A(1+r)2-a (1+r)-a](1+r)-a
。紸(1+r)3-a (1+r)2-a(1+r)-a
……
第n月末欠款數(shù)
得:
對于12年期的10萬元貸款,n=144,r=4.455‰
∴
對于15年期的15萬元貸款,n=180,r=5.025‰
∴
由此可知,汪先生家前12年每月還款942.37+1268.22=2210.59元,后3年每月還款1268.22元.
(2)至12年末,汪先生家按計劃還款以后還欠商業(yè)貸款
其中A=150000,a=1268.22,r=5.025‰ ∴X=41669.53
再加上當月的計劃還款數(shù)2210.59元,當月共還款43880.12元.
需要提及的是,本題的計算如果不許用計算器,就要用到二項展開式進行估算,這在2002年全國高考第(12)題中得到考查. 例11 醫(yī)學(xué)上為研究傳染病傳播中病毒細胞的發(fā)展規(guī)律及其預(yù)防,將病毒細胞注入一只小白鼠體內(nèi)進行實驗,經(jīng)檢測,病毒細胞的增長數(shù)與天數(shù)的關(guān)系記錄如下表. 已知該種病毒細胞在小白鼠體內(nèi)的個數(shù)超過108的時候小白鼠將死亡.但注射某種藥物,將可殺死其體內(nèi)該病毒細胞的98%. (1)為了使小白鼠在實驗過程中不死亡,第一次最遲應(yīng)在何時注射該種藥物?(精確到天) (2)第二次最遲應(yīng)在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)
天數(shù)t 病毒細胞總數(shù)N 1 2 3 4 5 6 7 … 1 2 4 8 16 32 64 … 講解 (1)由題意病毒細胞關(guān)于時間n的函數(shù)為, 則由 兩邊取對數(shù)得 n27.5, 即第一次最遲應(yīng)在第27天注射該種藥物. (2)由題意注入藥物后小白鼠體內(nèi)剩余的病毒細胞為, 再經(jīng)過x天后小白鼠體內(nèi)病毒細胞為, 由題意≤108,兩邊取對數(shù)得 , 故再經(jīng)過6天必須注射藥物,即第二次應(yīng)在第33天注射藥物. 本題反映的解題技巧是“兩邊取對數(shù)”,這對實施指數(shù)運算是很有效的. 例12 有一個受到污染的湖泊,其湖水的容積為V立方米,每天流出湖泊的水量都是r立方米,現(xiàn)假設(shè)下雨和蒸發(fā)正好平衡,且污染物質(zhì)與湖水能很好地混合,用g(t)表示某一時刻t每立方米湖水所含污染物質(zhì)的克數(shù),我們稱為在時刻t時的湖水污染質(zhì)量分數(shù),已知目前污染源以每天p克的污染物質(zhì)污染湖水,湖水污染質(zhì)量分數(shù)滿足關(guān)系式g(t)=
+[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始質(zhì)量分數(shù). (1)當湖水污染質(zhì)量分數(shù)為常數(shù)時,求湖水污染的初始質(zhì)量分數(shù); (2)求證:當g(0)< 時,湖泊的污染程度將越來越嚴重; (3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要經(jīng)過多少天才能使湖水的污染水平下降到開始時污染水平的5%? 講解(1)∵g(t)為常數(shù), 有g(shù)(0)-=0,
∴g(0)= . (2) 我們易證得0<t1<t2, 則 g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ], ∵g(0)?<0,t1<t2,e>e, ∴g(t1)<g(t2) . 故湖水污染質(zhì)量分數(shù)隨時間變化而增加,污染越來越嚴重. (3)污染停止即P=0,g(t)=g(0)?e,設(shè)經(jīng)過t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)? ∴=e,∴t=
ln20, 故需要 ln20天才能使湖水的污染水平下降到開始時污染水平的5%. 高考應(yīng)用性問題的熱門話題是增減比率型和方案優(yōu)化型, 另外,估測計算型和信息遷移型也時有出現(xiàn).當然,數(shù)學(xué)高考應(yīng)用性問題關(guān)注當前國內(nèi)外的政治,經(jīng)濟,文化, 緊扣時代的主旋律,凸顯了學(xué)科綜合的特色,是歷年高考命題的一道亮麗的風(fēng)景線.
| | | | |