10.如圖所示,線段AB與CD互相垂直平分于點(diǎn)O,|AB|=2a(a>0),|CD|=2b (b﹥0),動(dòng)點(diǎn)P滿足|PA|·|PB|=|PC|·|PD|.求動(dòng)點(diǎn)P的軌跡方程.
解 以O(shè)為坐標(biāo)原點(diǎn),直線AB、CD分別為x軸、y軸建立直角坐標(biāo)系,
則A(-a,0),B(a,0),C(0,-b),D(0,b),
設(shè)P(x,y),由題意知
|PA|·|PB|=|PC|·|PD|,
∴·
=·,
化簡得x2-y2=.
故動(dòng)點(diǎn)P的軌跡方程為x2-y2=.
9.如圖所示,已知點(diǎn)C的坐標(biāo)是(2,2),過點(diǎn)C的直線CA與x軸交于點(diǎn)A,過點(diǎn)C且與直線CA垂直的直線CB與y軸交于點(diǎn)B.設(shè)點(diǎn)M是線段AB的中點(diǎn),求點(diǎn)M的軌跡方程.
解 方法一 (參數(shù)法):設(shè)M的坐標(biāo)為(x,y).
若直線CA與x軸垂直,則可得到M的坐標(biāo)為(1,1).
若直線CA不與x軸垂直,設(shè)直線CA的斜率為k,則直線CB的斜率為-,故直線CA方程為:y=k(x-2)+2,
令y=0得x=2-,則A點(diǎn)坐標(biāo)為(2-,0).
CB的方程為:y=-(x-2)+2,令x=0,得y=2+,
則B點(diǎn)坐標(biāo)為(0,2+),由中點(diǎn)坐標(biāo)公式得M點(diǎn)的坐標(biāo)為
①
消去參數(shù)k得到x+y-2=0 (x≠1),
點(diǎn)M(1,1)在直線x+y-2=0上,
綜上所述,所求軌跡方程為x+y-2=0.
方法二 (直接法)設(shè)M(x,y),依題意A點(diǎn)坐標(biāo)為(2x,0),B點(diǎn)坐標(biāo)為(0,2y).∵|MA|=|MC|,
∴=,
化簡得x+y-2=0.
方法三 (定義法)依題意|MA|=|MC|=|MO|,
即:|MC|=|MO|,所以動(dòng)點(diǎn)M是線段OC的中垂線,故由點(diǎn)斜式方程得到:x+y-2=0.
8.平面上有三點(diǎn)A(-2,y),B(0,),C(x,y),若⊥,則動(dòng)點(diǎn)C的軌跡方程為 .
答案 y2=8x
7.已知△ABC的頂點(diǎn)B(0,0),C(5,0),AB邊上的中線長|CD|=3,則頂點(diǎn)A的軌跡方程為 .
答案 (x-10)2+y2=36(y≠0)
6.一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O的一個(gè)定點(diǎn),點(diǎn)A是圓周上一動(dòng)點(diǎn),把紙片折疊使點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于點(diǎn)P,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡為 (寫出形狀即可).
答案 橢圓
5.F1、F2是橢圓的兩個(gè)焦點(diǎn),M是橢圓上任一點(diǎn),從任一焦點(diǎn)向△F1MF2頂點(diǎn)M的外角平分線引垂線,垂足為P,則P點(diǎn)的軌跡為 (寫出形狀即可).
答案 圓
4.平面直角坐標(biāo)系中,已知兩點(diǎn)A(3,1),B(-1,3),若點(diǎn)C滿足= +(O為原點(diǎn)),其中,∈R,且+=1,則點(diǎn)C的軌跡是 (寫出形狀即可).
答案 直線
3.長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),=2,則點(diǎn)C的軌跡是 (寫出形狀即可).
答案 橢圓
2.已知兩定點(diǎn)A(-2,0),B(1,0),如果動(dòng)點(diǎn)P滿足|PA|=2|PB|,則點(diǎn)P的軌跡所包圍的圖形的面積等于 .
答案 4
1.在平面直角坐標(biāo)系xOy中,已知拋物線關(guān)于x軸對稱,頂點(diǎn)在原點(diǎn)O,且過點(diǎn)P(2,4),則該拋物線的方程是 .
答案 y2=8x
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com