相關(guān)習(xí)題
 0  259897  259905  259911  259915  259921  259923  259927  259933  259935  259941  259947  259951  259953  259957  259963  259965  259971  259975  259977  259981  259983  259987  259989  259991  259992  259993  259995  259996  259997  259999  260001  260005  260007  260011  260013  260017  260023  260025  260031  260035  260037  260041  260047  260053  260055  260061  260065  260067  260073  260077  260083  260091  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>1,若對任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫出函數(shù), 的增區(qū)間;

(2)寫出函數(shù), 的解析式;

(3)若函數(shù), ,求函數(shù)的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知斜率為k(k≠0)的直線 交橢圓 兩點(diǎn)。
(1)記直線 的斜率分別為 ,當(dāng) 時(shí),證明:直線 過定點(diǎn);
(2)若直線 過點(diǎn) ,設(shè) 的面積比為 ,當(dāng) 時(shí),求 的取值范圍。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明上是減函數(shù);

3)函數(shù)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

科目: 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四棱錐的底面是正方形,底面.

(1)求證:直線平面;

(2)當(dāng)的值為多少時(shí),二面角的大小為?

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,f(A)=2,a= ,b+c=3(b>c),求b,c的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列命題正確個(gè)數(shù)為(

1)若,當(dāng)時(shí),則上是單調(diào)遞增函數(shù);

2單調(diào)減區(qū)間為;

3

-3

-2

-1

0

1

2

3

4

3

2

1

-2

-3

-4

上述表格中的函數(shù)是奇函數(shù);

4)若上的偶函數(shù),則都在圖像上.

A.0B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實(shí)數(shù)a≠0恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來的 ,再將所得曲線向左平移1個(gè)單位,得到曲線C1 , 求曲線C1上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案