3.已知是空間二向量,若的夾角為 .
2.設(shè)A、B、C、D是空間不共面的四點(diǎn),且滿足
則△BCD是( )
A.鈍角三角形 B.直角三角形 C.銳角三角形 D.不確定
1.已知向量的夾角為( )
A.0° B.45° C.90° D.180°
[例1]下列所表示的空間直角坐標(biāo)系的直觀圖中,不正確的是( )
錯(cuò)解:B、C、D中任選一個(gè)
錯(cuò)因:對(duì)于空間直角坐標(biāo)系的表示不清楚。有共同的原點(diǎn),且兩兩垂直的三條數(shù)軸,只要符合右手系的規(guī)定,就可以作為空間直角坐標(biāo)系.
正解:易知(C)不符合右手系的規(guī)定,應(yīng)選(C).
[例2]已知點(diǎn)A(-3,-1,1),點(diǎn)B(-2,2,3),在Ox、Oy、Oz軸上分別取點(diǎn)L、M、N,使它們與A、B兩點(diǎn)等距離.
錯(cuò)因:對(duì)于坐標(biāo)軸上點(diǎn)的坐標(biāo)特征不明;使用方程解題的思想意識(shí)不夠。
分析:設(shè)Ox軸上的點(diǎn)L的坐標(biāo)為(x,0,0),由題意可得關(guān)于x的一元方程,從而解得x的值.類似可求得點(diǎn)M、N的坐標(biāo).
解:設(shè)L、M、N的坐標(biāo)分別為(x,0,0)、(0,y,0)、(0,0,z).
由題意,得
(x+3)2+1+1=(x+2)2+4+9,
9+(y+1)2+1=4+(y-2)2+9,
9+1+(z-1)2=4+4+(z-3)2.
分別解得,
故
評(píng)注:空間兩點(diǎn)的距離公式是平面內(nèi)兩點(diǎn)的距離公式的推廣:若點(diǎn)P、Q的坐標(biāo)分別為(x1,y1,z1)、(x2,y2,z2),則P、Q的距離為
必須熟練掌握這個(gè)公式.
[例3]設(shè),,且,記,求與軸正方向的夾角的余弦值
錯(cuò)解:取軸上的任一向量,設(shè)所求夾角為,
∵
∴,
即余弦值為
錯(cuò)因:審題不清。沒(méi)有看清“軸正方向”,并不是軸
正解:取軸正方向的任一向量,設(shè)所求夾角為,
∵
∴,即為所求
[例4]在ΔABC中,已知=(2,4,0),=(-1,3,0),則∠ABC=___
解:
=
∴∠ABC=135°
[例5]已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5),
⑴求以向量為一組鄰邊的平行四邊形的面積S;
⑵若向量分別與向量垂直,且||=,求向量的坐標(biāo)
分析:⑴
∴∠BAC=60°,
⑵設(shè)=(x,y,z),則
解得x=y(tǒng)=z=1或x=y(tǒng)=z=-1,∴=(1,1,1)或=(-1,-1,-1).
[例6]已知正方體的棱長(zhǎng)為,是的中點(diǎn),是對(duì)角線的中點(diǎn),
求異面直線和的距離
解:以為原點(diǎn),所在的直線分別為軸,軸、軸建立空間直角坐標(biāo)系,則
,
設(shè),
∵在平面上,
∴,即,
∴,
∵,∴,
解得:,∴,∴.
另外,此題也可直接求與間的距離
設(shè)與的公垂線為,且,
設(shè),設(shè),
則,∴,∴,
同理,
∴,∴,
∴,
解得:,,.
4、本節(jié)內(nèi)容對(duì)于立體幾何的應(yīng)用,讀者需自行復(fù)習(xí),這里不再贅述。
3、向量運(yùn)算的主要應(yīng)用在于如下幾個(gè)方面:
(1)判斷空間兩條直線平行(共線)或垂直;
(2)求空間兩點(diǎn)間的距離;
(3)求兩條異面直線所成的角.
2、空間向量作為新加入的內(nèi)容,在處理空間問(wèn)題中具有相當(dāng)?shù)膬?yōu)越性,比原來(lái)處理空間問(wèn)題的方法更有靈活性,所以本節(jié)的學(xué)習(xí)難點(diǎn)在于掌握應(yīng)用空間向量的常用技巧與方法,特別是體會(huì)其中的轉(zhuǎn)化的思想方法.如把立體幾何中的線面關(guān)系問(wèn)題及求角求距離問(wèn)題轉(zhuǎn)化為用向量解決,如何取向量或建立空間坐標(biāo)系,找到所論證的平行垂直等關(guān)系,所求的角和距離用向量怎樣來(lái)表達(dá)是問(wèn)題的關(guān)鍵.
1、對(duì)于這部分的一些知識(shí)點(diǎn),讀者可以對(duì)照平面向量的知識(shí),看哪些知識(shí)可以直接推廣,哪些需要作修改,哪些不能用的,稍作整理,以便于記憶;
6.兩點(diǎn)間的距離公式:若,,則
5.夾角公式:.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com