相關(guān)習(xí)題
 0  235824  235832  235838  235842  235848  235850  235854  235860  235862  235868  235874  235878  235880  235884  235890  235892  235898  235902  235904  235908  235910  235914  235916  235918  235919  235920  235922  235923  235924  235926  235928  235932  235934  235938  235940  235944  235950  235952  235958  235962  235964  235968  235974  235980  235982  235988  235992  235994  236000  236004  236010  236018  266669 

科目: 來源: 題型:選擇題

19.如果拋物線方程為y2=4x,那么它的焦點(diǎn)坐標(biāo)為( 。
A.(1,0)B.(2,0)C.(-1,0)D.(-2,0)

查看答案和解析>>

科目: 來源: 題型:解答題

18.在拋物線y=4x2上有一點(diǎn)P,使這點(diǎn)到直線y=4x-5的距離最短,求該點(diǎn)P坐標(biāo)和最短距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知點(diǎn)P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為(  )
A.($\frac{1}{4}$,-1)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,-1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若拋物線y2=8x上一點(diǎn)P到其焦點(diǎn)的距離為9,則點(diǎn)P的坐標(biāo)為( 。
A.(7,±$\sqrt{14}$)B.(14,±$\sqrt{14}$)C.(7,±2$\sqrt{14}$)D.(-7,±2$\sqrt{14}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.某空間幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積是( 。
A.32+8$\sqrt{6}$B.48+8$\sqrt{6}$C.48+8$\sqrt{3}$D.44+8$\sqrt{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.設(shè)圓x2+y2+4x-32=0的圓心為A,直線l過點(diǎn)B(2,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E.
(1)證明|EA|+|EB|為定值,并寫出點(diǎn)E的軌跡方程;
(2)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=3,AC=AA1=6,AD=CD=5,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(1)求證:MN∥平面ABCD;
(2)求二面角D1-AC-B1的正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn=qSn-1+1,其中q>0,n>1,n∈N*
(1)若2a2,a3,a2+2 成等差數(shù)列,求{an}的通項(xiàng)公式;
(2)設(shè)雙曲線x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1 的離心率為en,且e2=3,求e${\;}_{1}^{2}$+e${\;}_{2}^{2}$+…+e${\;}_{n}^{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知雙曲線的焦點(diǎn)在x軸上,|F1F2|=2$\sqrt{3}$,漸近線方程為$\sqrt{2}x±y=0$,問:過點(diǎn)B(1,1)能否作直線l,使l與雙曲線交于M,N兩點(diǎn),并且點(diǎn)B為線段MN的中點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知雙曲線$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1與$\frac{{x}^{3}}{8}$-$\frac{{y}^{2}}{4}$=1有相同的離心率,則m=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案