相關(guān)習(xí)題
 0  235867  235875  235881  235885  235891  235893  235897  235903  235905  235911  235917  235921  235923  235927  235933  235935  235941  235945  235947  235951  235953  235957  235959  235961  235962  235963  235965  235966  235967  235969  235971  235975  235977  235981  235983  235987  235993  235995  236001  236005  236007  236011  236017  236023  236025  236031  236035  236037  236043  236047  236053  236061  266669 

科目: 來源: 題型:選擇題

2.一條直線與兩條異面直線中的一條平行,則它和另一條的位置關(guān)系是(  )
A.異面B.相交C.異面或平行D.相交或異面

查看答案和解析>>

科目: 來源: 題型:選擇題

1.下列關(guān)于零向量的說法不正確的是( 。
A.零向量是沒有方向的向量B.零向量的方向是任意的
C.零向量與任一向量共線D.零向量只能與零向量相等

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知 f(sinx)=x,且 $x∈({0,\frac{π}{2}})$,則$f(\frac{1}{2})$ 的值等于( 。
A.$sin\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

19.雙曲線與橢圓有共同的焦點(diǎn)F1(-5,0),F(xiàn)2(5,0),點(diǎn)P(4,3)是雙曲線的漸近線與橢圓的一個(gè)交點(diǎn),求雙曲線與橢圓的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

18.如圖給出的是計(jì)算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$+…+$\frac{1}{100}$的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是i<51或(i<=50)?

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:AP∥平面EFG;
(2)若點(diǎn)Q是線段PB的中點(diǎn),求證:PC⊥平面ADQ.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖,設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),長軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是$\frac{\sqrt{3}}{2}$.
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

15.△ABC中,已知角A,B,C所對的邊分別為a,b,c,$\frac{cosA}{a}$+$\frac{cosC}{c}$=$\frac{1}$,b=4,且a>c.
(1)求ac的值;
(2)若△ABC的面積為2$\sqrt{7}$,求a,c的值.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2x-1,-1≤x<0}\\{-2x+1,0<x≤1}\end{array}\right.$,則f(f(-1))=-1,|f(x)|$<\frac{1}{2}$的解集為(-$\frac{3}{4}$,$\frac{1}{4}$)∪($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目: 來源: 題型:解答題

13.求下列各式的值.
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-0.30-16${\;}^{-\frac{3}{4}}$; 
 (2)4${\;}^{lo{g}_{4}5}$-lne5+lg500+lg2.

查看答案和解析>>

同步練習(xí)冊答案