20.(本小題滿分12分)
水庫(kù)的蓄水量隨時(shí)間而變化,現(xiàn)用表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫(kù)的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為
(Ⅰ)該水庫(kù)的蓄求量小于50的時(shí)期稱為枯水期.以表示第1月份(),同一年內(nèi)哪幾個(gè)月份是枯水期?
(Ⅱ)求一年內(nèi)該水庫(kù)的最大蓄水量(取計(jì)算).
解:本小題主要考查函數(shù)、導(dǎo)數(shù)和不等式等基本知識(shí),考查用導(dǎo)數(shù)求最值和綜合運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題能力.(滿分12分)
(Ⅰ)①當(dāng)時(shí),,化簡(jiǎn)得,
解得,或,又,故.
②當(dāng)時(shí),,化簡(jiǎn)得,
解得,又,故.
綜合得,或;
故知枯水期為1月,2月,3月,11月,12月共5個(gè)月.
(Ⅱ)(Ⅰ)知:V(t)的最大值只能在(4,10)內(nèi)達(dá)到.
由V′(t)=
令V′(t)=0,解得t=8(t=-2舍去).
當(dāng)t變化時(shí),V′(t) 與V (t)的變化情況如下表:
t
(4,8)
8
(8,10)
V′(t)
+
0
-
V(t)
得(1-k2)x2-4kx-6=0.
∵直線l與雙曲線C相交于不同的兩點(diǎn)E、F,
∴.
. ②
設(shè)E(x1,y1),F(x2,y2),則由①式得
|x1-x2|= ③
當(dāng)E、F在同一去上時(shí)(如圖1所示),
S△OEF=
當(dāng)E、F在不同支上時(shí)(如圖2所示).
S△ODE=
綜上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面積不小于2
、
綜合②、④知,直線l的斜率的取值范圍為
(Ⅱ)解法1:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理得(1-k2)x2-4kx-6=0.
∵直線l與雙曲線C相交于不同的兩點(diǎn)E、F,
②
設(shè)E(x,y),F(xiàn)(x2,y2),則由①式得x1+x2=,于是
|EF|=
=
而原點(diǎn)O到直線l的距離d=,
∴S△DEF=
若△OEF面積不小于2,即S△OEF,則有
③
綜合②、③知,直線l的斜率的取值范圍為
解法2:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理,
|AB|=4.
∴曲線C是以原點(diǎn)為中心,A、B為焦點(diǎn)的雙曲線.
設(shè)雙曲線的方程為>0,b>0).
解得a2=b2=2,
∴曲線C的方程為
則c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲線C的方程為.
解法2:同解法1建立平面直角坐標(biāo)系,則依題意可得|MA|-|MB|=|PA|-|PB|<
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲線C是以原點(diǎn)為中心,A、B為焦點(diǎn)的雙曲線.
設(shè)實(shí)平軸長(zhǎng)為a,虛半軸長(zhǎng)為b,半焦距為c,
19.(本小題滿分13分)
如圖,在以點(diǎn)為圓心,為直徑的半圓中,,是半圓弧上一點(diǎn),
,曲線是滿足為定值的動(dòng)點(diǎn)的軌跡,且曲線過(guò)點(diǎn).
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線l與曲線相交于不同的兩點(diǎn)、.
若△的面積不小于,求直線斜率的取值范圍.
解:本小題主要考查直線、圓和雙曲線等平面解析幾何的基礎(chǔ)知識(shí),考查軌跡方程的求法、不等式的解法以及綜合解題能力.(滿分13分)
(Ⅰ)解法1:以O(shè)為原點(diǎn),AB、OD所在直線分別為x軸、y軸,建立平面直角坐標(biāo)系,則A(-2,0),B(2,0),D(0,2),P(),依題意得
18.(本小題滿分12分)
如圖,在直三棱柱中,平面?zhèn)让?
(Ⅰ)求證:;
(Ⅱ)若直線與平面所成的角為,二面角的大小為,試判斷與的大小關(guān)系,并予以證明.
解:本小題主要考查直棱柱、直線與平面所成角、二面角和線面關(guān)系等有關(guān)知識(shí),同時(shí)考查空間想象能力和推理能力.(滿分12分)
(Ⅰ)證明:如右圖,過(guò)點(diǎn)A在平面A1ABB1內(nèi)作
AD⊥A1B于D,則
由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC側(cè)面A1ABB1=A1B,得
AD⊥平面A1BC,又BC平面A1BC,
所以AD⊥BC.
因?yàn)槿庵鵄BC―A1B1C1是直三棱柱,
則AA1⊥底面ABC,
所以AA1⊥BC.
又AA1AD=A,從而B(niǎo)C⊥側(cè)面A1ABB1,
又AB側(cè)面A1ABB1,故AB⊥BC.
(Ⅱ)解法1:連接CD,則由(Ⅰ)知是直線AC與平面A1BC所成的角,
是二面角A1―BC―A的平面角,即
于是在Rt△ADC中,在Rt△ADB中,
由AB<AC,得又所以
解法2:由(Ⅰ)知,以點(diǎn)B為坐標(biāo)原點(diǎn),以BC、BA、BB1所在的直線分
別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,設(shè)AA1=a,AC=b,
AB=c,則 B(0,0,0), A(0,c,0), 于是
設(shè)平面A1BC的一個(gè)法向量為n=(x,y,z),則
由得
可取n=(0,-a,c),于是與n的夾角為銳角,則與互為余角.
所以
于是由c<b,得
即又所以
當(dāng)a=-2時(shí),由1=-2×1.5+b,得b=4.
∴或即為所求.
當(dāng)a=2時(shí),由1=2×1.5+b,得b=-2;
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com