0  7691  7699  7705  7709  7715  7717  7721  7727  7729  7735  7741  7745  7747  7751  7757  7759  7765  7769  7771  7775  7777  7781  7783  7785  7786  7787  7789  7790  7791  7793  7795  7799  7801  7805  7807  7811  7817  7819  7825  7829  7831  7835  7841  7847  7849  7855  7859  7861  7867  7871  7877  7885  447090 

f(1)=b+c+bc+1=(1+b)(1+c)>0,   f(-1)=-b-c+bc+1=(1-b)(1-c)>0.

試題詳情

因?yàn)閨c|<1,所以f(a)=-c2+1>0.

當(dāng)b+c≠0時(shí),f(x)=(b+c)x+bc+1為x的一次函數(shù).

因?yàn)閨b|<1,|c|<1,

試題詳情

當(dāng)b+c=0時(shí),即b=-c,    f(a)=bc+1=-c2+1.

試題詳情

f(a)=(b+c)a+bc+1.

試題詳情

(2)將ab+bc+ca+1寫(xiě)成(b+c)a+bc+1,構(gòu)造函數(shù)f(x)=(b+c)x+bc+1.則

試題詳情

當(dāng)k<0時(shí),函數(shù)f(x)=kx+h在x∈R上是減函數(shù),m<x<n,f(x)>f(n)>0.

所以對(duì)于任意x∈(m,n)都有f(x)>0成立.

試題詳情

分析問(wèn)題(1)實(shí)質(zhì)上是要證明,一次函數(shù)f(x)=kx+h(k≠0), x∈(m, n).若區(qū)間兩個(gè)端點(diǎn)的函數(shù)值均為正,則對(duì)于任意x∈(m,n)都有f(x)>0.之所以具有上述性質(zhì)是由于一次函數(shù)是單調(diào)的.因此本問(wèn)題的證明要從函數(shù)單調(diào)性入手.

(1)證明:

當(dāng)k>0時(shí),函數(shù)f(x)=kx+h在x∈R上是增函數(shù),m<x<n,f(x)>f(m)>0;

試題詳情

若a,b,c∈R且|a|<1,|b|<1,|c|<1,則ab+bc+ca>-1.

試題詳情

分析:在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)y=lgx與y=-x+3的圖象(如圖2).它們的交點(diǎn)橫坐標(biāo),顯然在區(qū)間(1,3)內(nèi),由此可排除A,D.至于選B還是選C,由于畫(huà)圖精確性的限制,單憑直觀就比較困難了.實(shí)際上這是要比較與2的大。(dāng)x=2時(shí),lgx=lg2,3-x=1.由于lg2<1,因此>2,從而判定∈(2,3),故本題應(yīng)選C.

說(shuō)明:本題是通過(guò)構(gòu)造函數(shù)用數(shù)形結(jié)合法求方程lgx+x=3解所在的區(qū)間.?dāng)?shù)形結(jié)合,要在結(jié)合方面下功夫.不僅要通過(guò)圖象直觀估計(jì),而且還要計(jì)算的鄰近兩個(gè)函數(shù)值,通過(guò)比較其大小進(jìn)行判斷.

11(1)一次函數(shù)f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,則對(duì)于任意x∈(m,n)都有f(x)>0,試證明之;

(2)試用上面結(jié)論證明下面的命題:

試題詳情

4.樹(shù)立函數(shù)思想,使學(xué)生善于用運(yùn)動(dòng)變化的觀點(diǎn)分析問(wèn)題.

本部分內(nèi)容的重點(diǎn)是:通過(guò)對(duì)問(wèn)題的講解與分析,使學(xué)生能較好的調(diào)動(dòng)函數(shù)的基礎(chǔ)知識(shí)解決問(wèn)題,并在解決問(wèn)題中深化對(duì)基礎(chǔ)知識(shí)的理解,深化對(duì)函數(shù)思想、數(shù)形結(jié)合思想的理解與運(yùn)用.

難點(diǎn)是:函數(shù)思想的理解與運(yùn)用,推理論證能力、綜合運(yùn)用知識(shí)解決問(wèn)題能力的培養(yǎng)與提高.

函數(shù)的綜合運(yùn)用主要是指運(yùn)用函數(shù)的知識(shí)、思想和方法綜合解決問(wèn)題.函數(shù)描述了自然界中量的依存關(guān)系,是對(duì)問(wèn)題本身的數(shù)量本質(zhì)特征和制約關(guān)系的一種刻畫(huà),用聯(lián)系和變化的觀點(diǎn)提出數(shù)學(xué)對(duì)象,抽象其數(shù)學(xué)特征,建立函數(shù)關(guān)系.因此,運(yùn)動(dòng)變化、相互聯(lián)系、相互制約是函數(shù)思想的精髓,掌握有關(guān)函數(shù)知識(shí)是運(yùn)用函數(shù)思想的前提,提高用初等數(shù)學(xué)思想方法研究函數(shù)的能力,樹(shù)立運(yùn)用函數(shù)思想解決有關(guān)數(shù)學(xué)問(wèn)題的意識(shí)是運(yùn)用函數(shù)思想的關(guān)鍵.

1.準(zhǔn)確理解、熟練運(yùn)用,不斷深化有關(guān)函數(shù)的基礎(chǔ)知識(shí)

在中學(xué)階段函數(shù)只限于定義在實(shí)數(shù)集合上的一元單值函數(shù),其內(nèi)容可分為兩部分.第一部分是函數(shù)的概念和性質(zhì),這部分的重點(diǎn)是能從變量的觀點(diǎn)和集合映射的觀點(diǎn)理解函數(shù)及其有關(guān)概念,掌握描述函數(shù)性質(zhì)的單調(diào)性、奇偶性、周期性等概念;第二部分是七類(lèi)常見(jiàn)函數(shù)(一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)和反三角函數(shù))的圖象和性質(zhì).第一部分是理論基礎(chǔ),第二部分是第一部分的運(yùn)用與發(fā)展.

9已知函數(shù)f(x),x∈F,那么集合{(x,y)|y=f(x),x∈F}∩{(x,y)|x=1}中所含元素的個(gè)數(shù)是.(    )

A.0       B.1      C.0或1      D.1或2

分析這里首先要識(shí)別集合語(yǔ)言,并能正確把集合語(yǔ)言轉(zhuǎn)化成熟悉的語(yǔ)言.從函數(shù)觀點(diǎn)看,問(wèn)題是求函數(shù)y=f(x),x∈F的圖象與直線x=1的交點(diǎn)個(gè)數(shù)(這是一次數(shù)到形的轉(zhuǎn)化),不少學(xué)生常誤認(rèn)為交點(diǎn)是1個(gè),并說(shuō)這是根據(jù)函數(shù)定義中“惟一確定”的規(guī)定得到的,這是不正確的,因?yàn)楹瘮?shù)是由定義域、值域、對(duì)應(yīng)法則三要素組成的.這里給出了函數(shù)y=f(x)的定義域是F,但未明確給出1與F的關(guān)系,當(dāng)1∈F時(shí)有1個(gè)交點(diǎn),當(dāng)1 F時(shí)沒(méi)有交點(diǎn),所以選C.

2.掌握研究函數(shù)的方法,提高研究函數(shù)問(wèn)題的能力

高中數(shù)學(xué)對(duì)函數(shù)的研究理論性加強(qiáng)了,對(duì)一些典型問(wèn)題的研究十分重視,如求函數(shù)的定義域,確定函數(shù)的解析式,判斷函數(shù)的奇偶性,判斷或證明函數(shù)在指定區(qū)間的單調(diào)性等,并形成了研究這些問(wèn)題的初等方法,這些方法對(duì)分析問(wèn)題能力,推理論證能力和綜合運(yùn)用數(shù)學(xué)知識(shí)能力的培養(yǎng)和發(fā)展是十分重要的.

函數(shù)、方程、不等式是相互聯(lián)系的.對(duì)于函數(shù)f(x)與g(x),令f(x)=g(x),f(x)>g(x)或f(x)<g(x)則分別構(gòu)成方程和不等式,因此對(duì)于某些方程、不等式的問(wèn)題用函數(shù)觀點(diǎn)認(rèn)識(shí)是十分有益的;方程、不等式從另一個(gè)側(cè)面為研究函數(shù)提供了工具.

10方程lgx+x=3的解所在區(qū)間為(    )

A.(0,1)          B.(1,2)

C.(2,3)          D.(3,+∞)

試題詳情


同步練習(xí)冊(cè)答案