f(1)=b+c+bc+1=(1+b)(1+c)>0, f(-1)=-b-c+bc+1=(1-b)(1-c)>0.
因?yàn)閨c|<1,所以f(a)=-c2+1>0.
當(dāng)b+c≠0時(shí),f(x)=(b+c)x+bc+1為x的一次函數(shù).
因?yàn)閨b|<1,|c|<1,
當(dāng)b+c=0時(shí),即b=-c, f(a)=bc+1=-c2+1.
f(a)=(b+c)a+bc+1.
(2)將ab+bc+ca+1寫(xiě)成(b+c)a+bc+1,構(gòu)造函數(shù)f(x)=(b+c)x+bc+1.則
當(dāng)k<0時(shí),函數(shù)f(x)=kx+h在x∈R上是減函數(shù),m<x<n,f(x)>f(n)>0.
所以對(duì)于任意x∈(m,n)都有f(x)>0成立.
分析:問(wèn)題(1)實(shí)質(zhì)上是要證明,一次函數(shù)f(x)=kx+h(k≠0), x∈(m, n).若區(qū)間兩個(gè)端點(diǎn)的函數(shù)值均為正,則對(duì)于任意x∈(m,n)都有f(x)>0.之所以具有上述性質(zhì)是由于一次函數(shù)是單調(diào)的.因此本問(wèn)題的證明要從函數(shù)單調(diào)性入手.
(1)證明:
當(dāng)k>0時(shí),函數(shù)f(x)=kx+h在x∈R上是增函數(shù),m<x<n,f(x)>f(m)>0;
若a,b,c∈R且|a|<1,|b|<1,|c|<1,則ab+bc+ca>-1.
分析:在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)y=lgx與y=-x+3的圖象(如圖2).它們的交點(diǎn)橫坐標(biāo),顯然在區(qū)間(1,3)內(nèi),由此可排除A,D.至于選B還是選C,由于畫(huà)圖精確性的限制,單憑直觀就比較困難了.實(shí)際上這是要比較與2的大。(dāng)x=2時(shí),lgx=lg2,3-x=1.由于lg2<1,因此>2,從而判定∈(2,3),故本題應(yīng)選C.
說(shuō)明:本題是通過(guò)構(gòu)造函數(shù)用數(shù)形結(jié)合法求方程lgx+x=3解所在的區(qū)間.?dāng)?shù)形結(jié)合,要在結(jié)合方面下功夫.不僅要通過(guò)圖象直觀估計(jì),而且還要計(jì)算的鄰近兩個(gè)函數(shù)值,通過(guò)比較其大小進(jìn)行判斷.
例11.(1)一次函數(shù)f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,則對(duì)于任意x∈(m,n)都有f(x)>0,試證明之;
(2)試用上面結(jié)論證明下面的命題:
4.樹(shù)立函數(shù)思想,使學(xué)生善于用運(yùn)動(dòng)變化的觀點(diǎn)分析問(wèn)題.
本部分內(nèi)容的重點(diǎn)是:通過(guò)對(duì)問(wèn)題的講解與分析,使學(xué)生能較好的調(diào)動(dòng)函數(shù)的基礎(chǔ)知識(shí)解決問(wèn)題,并在解決問(wèn)題中深化對(duì)基礎(chǔ)知識(shí)的理解,深化對(duì)函數(shù)思想、數(shù)形結(jié)合思想的理解與運(yùn)用.
難點(diǎn)是:函數(shù)思想的理解與運(yùn)用,推理論證能力、綜合運(yùn)用知識(shí)解決問(wèn)題能力的培養(yǎng)與提高.
函數(shù)的綜合運(yùn)用主要是指運(yùn)用函數(shù)的知識(shí)、思想和方法綜合解決問(wèn)題.函數(shù)描述了自然界中量的依存關(guān)系,是對(duì)問(wèn)題本身的數(shù)量本質(zhì)特征和制約關(guān)系的一種刻畫(huà),用聯(lián)系和變化的觀點(diǎn)提出數(shù)學(xué)對(duì)象,抽象其數(shù)學(xué)特征,建立函數(shù)關(guān)系.因此,運(yùn)動(dòng)變化、相互聯(lián)系、相互制約是函數(shù)思想的精髓,掌握有關(guān)函數(shù)知識(shí)是運(yùn)用函數(shù)思想的前提,提高用初等數(shù)學(xué)思想方法研究函數(shù)的能力,樹(shù)立運(yùn)用函數(shù)思想解決有關(guān)數(shù)學(xué)問(wèn)題的意識(shí)是運(yùn)用函數(shù)思想的關(guān)鍵.
1.準(zhǔn)確理解、熟練運(yùn)用,不斷深化有關(guān)函數(shù)的基礎(chǔ)知識(shí)
在中學(xué)階段函數(shù)只限于定義在實(shí)數(shù)集合上的一元單值函數(shù),其內(nèi)容可分為兩部分.第一部分是函數(shù)的概念和性質(zhì),這部分的重點(diǎn)是能從變量的觀點(diǎn)和集合映射的觀點(diǎn)理解函數(shù)及其有關(guān)概念,掌握描述函數(shù)性質(zhì)的單調(diào)性、奇偶性、周期性等概念;第二部分是七類(lèi)常見(jiàn)函數(shù)(一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)和反三角函數(shù))的圖象和性質(zhì).第一部分是理論基礎(chǔ),第二部分是第一部分的運(yùn)用與發(fā)展.
例9.已知函數(shù)f(x),x∈F,那么集合{(x,y)|y=f(x),x∈F}∩{(x,y)|x=1}中所含元素的個(gè)數(shù)是.( )
A.0 B.1 C.0或1 D.1或2
分析:這里首先要識(shí)別集合語(yǔ)言,并能正確把集合語(yǔ)言轉(zhuǎn)化成熟悉的語(yǔ)言.從函數(shù)觀點(diǎn)看,問(wèn)題是求函數(shù)y=f(x),x∈F的圖象與直線x=1的交點(diǎn)個(gè)數(shù)(這是一次數(shù)到形的轉(zhuǎn)化),不少學(xué)生常誤認(rèn)為交點(diǎn)是1個(gè),并說(shuō)這是根據(jù)函數(shù)定義中“惟一確定”的規(guī)定得到的,這是不正確的,因?yàn)楹瘮?shù)是由定義域、值域、對(duì)應(yīng)法則三要素組成的.這里給出了函數(shù)y=f(x)的定義域是F,但未明確給出1與F的關(guān)系,當(dāng)1∈F時(shí)有1個(gè)交點(diǎn),當(dāng)1 F時(shí)沒(méi)有交點(diǎn),所以選C.
2.掌握研究函數(shù)的方法,提高研究函數(shù)問(wèn)題的能力
高中數(shù)學(xué)對(duì)函數(shù)的研究理論性加強(qiáng)了,對(duì)一些典型問(wèn)題的研究十分重視,如求函數(shù)的定義域,確定函數(shù)的解析式,判斷函數(shù)的奇偶性,判斷或證明函數(shù)在指定區(qū)間的單調(diào)性等,并形成了研究這些問(wèn)題的初等方法,這些方法對(duì)分析問(wèn)題能力,推理論證能力和綜合運(yùn)用數(shù)學(xué)知識(shí)能力的培養(yǎng)和發(fā)展是十分重要的.
函數(shù)、方程、不等式是相互聯(lián)系的.對(duì)于函數(shù)f(x)與g(x),令f(x)=g(x),f(x)>g(x)或f(x)<g(x)則分別構(gòu)成方程和不等式,因此對(duì)于某些方程、不等式的問(wèn)題用函數(shù)觀點(diǎn)認(rèn)識(shí)是十分有益的;方程、不等式從另一個(gè)側(cè)面為研究函數(shù)提供了工具.
例10.方程lgx+x=3的解所在區(qū)間為( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,+∞)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com