0  7723  7731  7737  7741  7747  7749  7753  7759  7761  7767  7773  7777  7779  7783  7789  7791  7797  7801  7803  7807  7809  7813  7815  7817  7818  7819  7821  7822  7823  7825  7827  7831  7833  7837  7839  7843  7849  7851  7857  7861  7863  7867  7873  7879  7881  7887  7891  7893  7899  7903  7909  7917  447090 

例9.某城市2001年末汽車保有量為30萬輛,預(yù)計(jì)此后每年報(bào)廢上一年末汽車保有量的6%,并且每年新增汽車數(shù)量相同.為保護(hù)城市環(huán)境,要求該城市汽車保有量不超過60萬輛,那么每年新增汽車數(shù)量不應(yīng)超過多少輛?

解:設(shè)2001年末汽車保有量為萬輛,以后各年末汽車保有量依次為萬輛,萬輛,……,每年新增汽車萬輛,則

            ,

所以,當(dāng)時(shí),,兩式相減得:

(1)顯然,若,則,即,此時(shí)

(2)若,則數(shù)列為以為首項(xiàng),以為公比的等比數(shù)列,所以,.

(i)若,則對(duì)于任意正整數(shù),均有,所以,,此時(shí),

(ii)當(dāng)時(shí),,則對(duì)于任意正整數(shù),均有,所以,,

由,得

,

要使對(duì)于任意正整數(shù),均有恒成立,

即      

對(duì)于任意正整數(shù)恒成立,解這個(gè)關(guān)于x的一元一次不等式 , 得

,

上式恒成立的條件為:,由于關(guān)于的函數(shù)單調(diào)遞減,所以,.

試題詳情

率為(1-0.9)(1-0.85)=0.015,損失期望值為400×0.015=6(萬元),所以總費(fèi)用為75+6=81(萬元).

綜合①、②、③、④,比較其總費(fèi)用可知,應(yīng)選擇聯(lián)合采取甲、乙兩種預(yù)防措施,可使總費(fèi)

用最少.

試題詳情

損失期望值為400×0.15=60(萬元),所以總費(fèi)用為30+60=90(萬元);

④若聯(lián)合采取甲、乙兩種預(yù)防措施,則預(yù)防措施費(fèi)用為45+30=75(萬元),發(fā)生突發(fā)事件的概

試題詳情

③若單獨(dú)采取預(yù)防措施乙,則預(yù)防措施費(fèi)用為30萬元,發(fā)生突發(fā)事件的概率為1-0.85=0.15,

試題詳情

1-0.9=0.1,損失期望值為400×0.1=40(萬元),所以總費(fèi)用為45+40=85(萬元)

試題詳情

解:①不采取預(yù)防措施時(shí),總費(fèi)用即損失期望為400×0.3=120(萬元);

       ②若單獨(dú)采取措施甲,則預(yù)防措施費(fèi)用為45萬元,發(fā)生突發(fā)事件的概率為

試題詳情

旦發(fā)生,將造成400萬元的損失. 現(xiàn)有甲、乙兩種相互獨(dú)立的預(yù)防措施可供采用. 單獨(dú)采用甲、乙預(yù)防措施所需的費(fèi)用分別為45萬元和30萬元,采用相應(yīng)預(yù)防措施后此突發(fā)事件不發(fā)生的概率為0.9和0.85. 若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用、聯(lián)合采用或不采用,請(qǐng)確定預(yù)防方案使總費(fèi)用最少.(總費(fèi)用=采取預(yù)防措施的費(fèi)用+發(fā)生突發(fā)事件損失的期望值.)

試題詳情

例8.(2004年湖北卷)某突發(fā)事件,在不采取任何預(yù)防措施的情況下發(fā)生的概率為0.3,一

試題詳情

解:(1)ξ、η的可能取值分別為3,2,1,0.

,

根據(jù)題意知ξ+η=3,所以  P(η=0)=P(ξ=3)=, P(η=1)=P(ξ=2)=

P(η=2)=P(ξ=1)= ,  P(η=3)=P(ξ=0)= .

   (2); 因?yàn)棣?η=3,所以 

試題詳情

例7.(2003年普通高等學(xué)校招生全國統(tǒng)一考試(天津卷理工農(nóng)醫(yī)類20))

A、B兩個(gè)代表隊(duì)進(jìn)行乒乓球?qū)官,每?duì)三名隊(duì)員,A隊(duì)隊(duì)員是A1,A2,A3,B

隊(duì)隊(duì)員是B1,B2,B3,按以往多次比賽的統(tǒng)計(jì),對(duì)陣隊(duì)員之間勝負(fù)概率如下:

對(duì)陣隊(duì)員

A隊(duì)隊(duì)員勝的概率

A隊(duì)隊(duì)員負(fù)的概率

A1對(duì)B1

A2對(duì)B2

A3對(duì)B3

現(xiàn)按表中對(duì)陣方式出場,每場勝隊(duì)得1分,負(fù)隊(duì)得0分,設(shè)A隊(duì)、B隊(duì)最后所得總分分別為ξ、η

   (1)求ξ、η的概率分布;

   (2)求Eξ,Eη.

分析:本小題考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望等概念,考查運(yùn)用概率知識(shí)解決實(shí)際問題的能力.

試題詳情


同步練習(xí)冊(cè)答案