相關(guān)習(xí)題
 0  265200  265208  265214  265218  265224  265226  265230  265236  265238  265244  265250  265254  265256  265260  265266  265268  265274  265278  265280  265284  265286  265290  265292  265294  265295  265296  265298  265299  265300  265302  265304  265308  265310  265314  265316  265320  265326  265328  265334  265338  265340  265344  265350  265356  265358  265364  265368  265370  265376  265380  265386  265394  266669 

科目: 來源: 題型:

【題目】已知函數(shù),,,且

(1)若函數(shù)處取得極值,試求函數(shù)的解析式及單調(diào)區(qū)間;

(2)設(shè),的導(dǎo)函數(shù),若存在,使成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列是等比數(shù)列,公比大于0,前項和是等差數(shù)列,已知,,

(Ⅰ)求數(shù)列,的通項公式;

(Ⅱ)設(shè)的前項和為

(ⅰ)求;

(ⅱ)若,記,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點(diǎn)分別是、,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)為橢圓上不在軸上的一個動點(diǎn),過點(diǎn)的平行線交橢圓與、兩個不同的點(diǎn),記,令,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形,,,

(Ⅰ)求證:平面;

(Ⅱ)求平面與平面所成銳二面角的大小;

(Ⅲ)求直線與平面所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某班50名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].從樣本成績不低于80分的學(xué)生中隨機(jī)選取2人,記這2人成績在90分以上(含90分)的人數(shù)為ξ,則ξ的數(shù)學(xué)期望為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)若與平行的直線與曲線交于,兩點(diǎn).且在軸的截距為整數(shù),的面積為,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】無線電技術(shù)在航海中有很廣泛的應(yīng)用,無線電波可以作為各種信息的載體.現(xiàn)有一艘航行中的輪船需要與陸地上的基站進(jìn)行通信,其連續(xù)向基站拍發(fā)若干次呼叫信號,每次呼叫信號被基站收到的概率都是0.2,基站收到呼叫信號后立即向輪船拍發(fā)回答信號,回答信號一定能被輪船收到.

(Ⅰ)若要保證基站收到信號的概率大于0.99,求輪船至少要拍發(fā)多少次呼叫信號.

(Ⅱ)設(shè)(Ⅰ)中求得的結(jié)果為.若輪船第一次拍發(fā)呼叫信號后,每隔5秒鐘拍發(fā)下一次,直到收到回答信號為止,已知該輪船最多拍發(fā)次呼叫信號,且無線電信號在輪船與基站之間一個來回需要16秒,設(shè)輪船停止拍發(fā)時,一共拍發(fā)了次呼叫信號,求的數(shù)學(xué)期望(結(jié)果精確到0.01).

參考數(shù)據(jù):

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)若,討論的單調(diào)性;

(Ⅱ)若,當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1在正方形中,,的中點(diǎn),把沿折疊,使為等邊三角形,得到如圖2所示的幾何體.

(Ⅰ)證明:;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案