科目: 來源: 題型:
【題目】“三分損益法”是古代中國發(fā)明制定音律時所用的方法,其基本原理是:以一根確定長度的琴弦為基準,取此琴強長度的得到第二根琴弦,第二根琴弦長度的為第三根琴弦,第三根琴弦長度的為第四根琴弦.第四根琴弦長度的為第五根琴弦.琴弦越短,發(fā)出的聲音音調越高,這五根琴弦發(fā)出的聲音按音調由低到高分別稱為“官、商、角(jué)、微(zhǐ)、羽”,則“角"和“徵”對應的琴弦長度之比為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】假定某射手每次射擊命中的概率為,且只有3發(fā)子彈.該射手一旦射中目標,就停止射擊,否則就一直獨立地射擊到子彈用完.設耗用子彈數(shù)為X,求:
(1)目標被擊中的概率;
(2)X的概率分布列;
(3)均值,方差V(X).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求實數(shù)的值;
(2)證明:當時,在上有兩個極值點;
(3)設,若在上是單調減函數(shù)(為自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等比數(shù)列中,已知設數(shù)列的前n項和為,且
(1)求數(shù)列通項公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓與橢圓相交于點M(0,1),N(0,-1),且橢圓的離心率為.
(1)求的值和橢圓C的方程;
(2)過點M的直線交圓O和橢圓C分別于A,B兩點.
①若,求直線的方程;
②設直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】從秦朝統(tǒng)一全國幣制到清朝末年,圓形方孔銅錢(簡稱“孔方兄”)是我國使用時間長達兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內部刻有四個字“同治重寶”.某模具廠計劃仿制這樣的銅錢作為紀念品,其小圓內部圖紙設計如圖2所示,小圓直徑1厘米,內嵌一個大正方形孔,四周是四個全等的小正方形(邊長比孔的邊長。,每個正方形有兩個頂點在圓周上,另兩個頂點在孔邊上,四個小正方形內用于刻銅錢上的字.設,五個正方形的面積和為S.
(1)求面積S關于的函數(shù)表達式,并求定義域;
(2)求面積S的最小值及此時的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角坐標系中,圓的方程為,,,為圓上三個定點,某同學從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設擲骰子次時,棋子移動到,,處的概率分別為,,.例如:擲骰子一次時,棋子移動到,,處的概率分別為,,.
(1)分別擲骰子二次,三次時,求棋子分別移動到,,處的概率;
(2)擲骰子次時,若以軸非負半軸為始邊,以射線,,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學期望;
(3)記,,,其中.證明:數(shù)列是等比數(shù)列,并求.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com