6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;
5.方程k=f(x)有解k∈D(D為f(x)的值域);
4.函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2的周期函數(shù);
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
2.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x)=;
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調區(qū)間內(nèi)有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內(nèi)有相反的單調性;
1.復合函數(shù)的有關問題
(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調性由“同增異減”判定;
6.(1)含n個元素的集合的子集個數(shù)為,真子集(非空子集)個數(shù)為-1;
(2) (3)
5.判斷命題充要條件的三種方法:(1)定義法;(2)利用集合間的包含關系判斷,若,則A是B的充分條件或B是A的必要條件;若A=B,則A是B的充要條件;(3)等價法:即利用等價關系判斷,對于條件或結論是不等關系(或否定式)的命題,一般運用等價法;
4.判斷命題的真假要以真值表為依據(jù)。原命題與其逆否命題是等價命題 ,逆命題與其否命題是等價命題 ,一真俱真,一假俱假,當一個命題的真假不易判斷時,可考慮判斷其等價命題的真假;
3.一個語句是否為命題,關鍵要看能否判斷真假,陳述句、反詰問句都是命題,而祁使句、疑問句、感嘆句都不是命題;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com