相關(guān)習(xí)題
 0  154787  154795  154801  154805  154811  154813  154817  154823  154825  154831  154837  154841  154843  154847  154853  154855  154861  154865  154867  154871  154873  154877  154879  154881  154882  154883  154885  154886  154887  154889  154891  154895  154897  154901  154903  154907  154913  154915  154921  154925  154927  154931  154937  154943  154945  154951  154955  154957  154963  154967  154973  154981  266669 

科目: 來源: 題型:解答題

已知點是橢圓的右焦點,點、分別是軸、
軸上的動點,且滿足.若點滿足
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設(shè)過點任作一直線與點的軌跡交于、兩點,直線、與直線分別交
于點、為坐標(biāo)原點),試判斷是否為定值?若是,求出這個定值;若不是,
請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題


已知橢圓:的一個焦點為且過點.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點分別為A1,A2,P是橢圓上異于A1,A2的任一點,直線PA1,PA2分別交軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T
證明:線段OT的長為定值,并求出該定值.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于,而與拋物線交于兩點,且.

(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線與橢圓相交于兩點,
設(shè)為橢圓上一點,且滿足為坐標(biāo)原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

已知中心在原點,焦點在x軸上,離心率為的橢圓過點(,).

(1)求橢圓的方程;
(2)設(shè)不過原點的直線與該橢圓交于、兩點,滿足直線,,的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)) 上的動點,點滿足,點的軌跡為曲線.
(1)求的方程;
(2)在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點的交點為,與的異于極點的交點為,求.

查看答案和解析>>

科目: 來源: 題型:解答題

已知是橢圓的左、右焦點,O為坐標(biāo)原點,點P在橢圓上,線段與y軸的交點M滿足
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點,當(dāng),且滿足時,求直線的方程。

查看答案和解析>>

科目: 來源: 題型:解答題

已知過拋物線的焦點,斜率為的直線交拋物線于)兩點,且
(1)求該拋物線的方程;
(2)為坐標(biāo)原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目: 來源: 題型:解答題

已知橢圓的離心率為,

軸被拋物線截得的線段長等于的長半軸長.
(1)求的方程;
(2)設(shè)軸的交點為,過坐標(biāo)原點的直線
相交于兩點,直線分別與相交于.   
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

(1)設(shè)橢圓與雙曲線有相同的焦點,是橢圓與雙曲線的公共點,且的周長為,求橢圓的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點的距離為,到直線的距離為,求證:為定值;
 
(3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為“盾圓”.設(shè)過點的直線與“盾圓”交于兩點,,),試用表示;并求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

已知橢圓過點,且它的離心率.直線
與橢圓交于、兩點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時,求證:、兩點的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓相切,橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案