相關(guān)習(xí)題
 0  235145  235153  235159  235163  235169  235171  235175  235181  235183  235189  235195  235199  235201  235205  235211  235213  235219  235223  235225  235229  235231  235235  235237  235239  235240  235241  235243  235244  235245  235247  235249  235253  235255  235259  235261  235265  235271  235273  235279  235283  235285  235289  235295  235301  235303  235309  235313  235315  235321  235325  235331  235339  266669 

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當(dāng)a=1時,求f(x)≤3的解集;
(2)當(dāng)x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知圓O:x2+y2=4,圓O1:(x-3)2+y2=1,過x軸的正半軸上一點M引圓O1的切線,切點為A,同時切線交圓O于B,C兩點,且AB=BC,則點M的坐標(biāo)是(7,0).

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=2$\sqrt{3}$cos2$\frac{x}{4}$-$\sqrt{3}$.
(1)求函數(shù)f(x)的最小正周期和對稱軸方程;
(2)若△ABC中,內(nèi)角A滿足f(A)=$\frac{3}{2}$,且邊BC長為3,求△ABC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.集合A={1,2,3,4},B={x|3≤x<6},則A∩B=( 。
A.{3,4}B.{4}C.{ x|3≤x≤4}D.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx,g(x)=$\frac{m(x+n)}{x+1}$(m>0).
(Ⅰ)若函數(shù)y=f(x)與y=g(x)在x=1處有相同的切線,求m的值;
(Ⅱ)若函數(shù)y=f(x)-g(x)在定義域內(nèi)不單調(diào),求m-n的取值范圍;
(Ⅲ)若?x>0,恒有|f(x)|≥|g(x)|成立,求實數(shù)m的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.直線x+2y-1=0在y軸上的截距為( 。
A.-1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.1

查看答案和解析>>

科目: 來源: 題型:填空題

20.以下4種說法
①一個命題的否命題為真,它的逆命題也一定為真;
②$\left\{\begin{array}{l}x>1\\ y>2\end{array}\right.$是$\left\{\begin{array}{l}x+y>3\\ xy>2\end{array}\right.$的充要條件;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件;
④“am2<bm2”是“a<b”的充分必要條件.
其中判斷錯誤的有②④.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知n為正偶數(shù),用數(shù)學(xué)歸納法證明1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)時,若已假設(shè)n=k(k≥2且k為偶數(shù))時等式成立,則還需要用歸納假設(shè)再證n=k+2時等式成立.

查看答案和解析>>

科目: 來源: 題型:解答題

18.(1)等比數(shù)列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,求公比q的值.
(2)已知數(shù)列{an}中,${S_n}={n^2}$,求數(shù)列{an}通項公式.

查看答案和解析>>

科目: 來源: 題型:解答題

17.(1)已知角α終邊上一點P(m,5)(m≠0),且 $cosα=\frac{m}{13}$.求sinα+cosα+tanα的值;
(2)已知β∈(0,$\frac{π}{4}$)且$sinβcosβ=\frac{3}{10}$,求( I)tanβ的值;
(II)sin2α+2cos2α+4sinαcosαsin2β+2cos2β+4sinβcosβ.

查看答案和解析>>

同步練習(xí)冊答案