例5.若二次函數(shù)y=f(x)的圖象經(jīng)過(guò)原點(diǎn),且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范圍.
分析:要求f(-2)的取值范圍,只需找到含人f(-2)的不等式(組).由于y=f(x)是二次函數(shù),所以應(yīng)先將f(x)的表達(dá)形式寫(xiě)出來(lái).即可求得f(-2)的表達(dá)式,然后依題設(shè)條件列出含有f(-2)的不等式(組),即可求解.
解:因?yàn)閥=f(x)的圖象經(jīng)過(guò)原點(diǎn),所以可設(shè)y=f(x)=ax2+bx.于是
解法一(利用基本不等式的性質(zhì))
不等式組(Ⅰ)變形得
(Ⅰ)
所以f(-2)的取值范圍是[6,10].
解法二(數(shù)形結(jié)合)
例4.解關(guān)于的不等式:
分析:本例主要復(fù)習(xí)含絕對(duì)值不等式的解法,分類(lèi)討論的思想。本題的關(guān)鍵不是對(duì)參數(shù)進(jìn)行討論,而是去絕對(duì)值時(shí)必須對(duì)末知數(shù)進(jìn)行討論,得到兩個(gè)不等式組,最后對(duì)兩個(gè)不等式組的解集求并集,得出原不等式的解集。
解:當(dāng)
。
例3.?dāng)?shù)列由下列條件確定:
(1)證明:對(duì)于,
(2)證明:對(duì)于.
證明:(1)
(2)當(dāng)時(shí),
=。
例2.已知非負(fù)實(shí)數(shù),滿(mǎn)足且,則的最大值是( )
A. B. C. D.
解:畫(huà)出圖象,由線(xiàn)性規(guī)劃知識(shí)可得,選D
所以當(dāng)y=1時(shí),= 4.
簡(jiǎn)評(píng):題設(shè)條件中出現(xiàn)集合的形式,因此要認(rèn)清集合元素的本質(zhì)屬性,然后結(jié)合條件,揭示
其數(shù)學(xué)實(shí)質(zhì).即求集合M中的元素滿(mǎn)足關(guān)系式
4.根據(jù)題目結(jié)構(gòu)特點(diǎn),執(zhí)果索因,往往是有效的思維方法。
b)∈M,且對(duì)M中的其它元素(c,d),總有c≥a,則a=____.
分析:讀懂并能揭示問(wèn)題中的數(shù)學(xué)實(shí)質(zhì),將是解決該問(wèn)題的突破口.怎樣理解“對(duì)M中的其它元素(c,d),總有c≥a”?M中的元素又有什么特點(diǎn)?
解:依題可知,本題等價(jià)于求函數(shù)x=f(y)=(y+3)?|y-1|+(y+3)
(2)當(dāng)1≤y≤3時(shí),
3.不等式證明方法有多種,既要注意到各種證法的適用范圍,又要注意在掌握常規(guī)證法的基礎(chǔ)上,選用一些特殊技巧。如運(yùn)用放縮法證明不等式時(shí)要注意調(diào)整放縮的度。
2.解含參數(shù)不等式時(shí),要特別注意數(shù)形結(jié)合思想,函數(shù)與方程思想,分類(lèi)討論思想的錄活運(yùn)用。
1.解不等式的基本思想是轉(zhuǎn)化、化歸,一般都轉(zhuǎn)化為最簡(jiǎn)單的一元一次不等式(組)或一元二次不等式(組)來(lái)求解,。
7.通過(guò)不等式的基本知識(shí)、基本方法在代數(shù)、三角函數(shù)、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何等各部分知識(shí)中的應(yīng)用,深化數(shù)學(xué)知識(shí)間的融匯貫通,從而提高分析問(wèn)題解決問(wèn)題的能力.在應(yīng)用不等式的基本知識(shí)、方法、思想解決問(wèn)題的過(guò)程中,提高學(xué)生數(shù)學(xué)素質(zhì)及創(chuàng)新意識(shí).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com