3.理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問題.
2.理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問題.
1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問題.
例5、已知橢圓的長(zhǎng)、短軸端點(diǎn)分別為A、B,從此橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量與是共線向量。
(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點(diǎn), 、分別是左、右焦點(diǎn),求∠ 的取值范圍;
解:(1)∵,∴。
∵是共線向量,∴,∴b=c,故。
(2)設(shè)
當(dāng)且僅當(dāng)時(shí),cosθ=0,∴θ。
說明:由于共線向量與解析幾何中平行線、三點(diǎn)共線等具有異曲同工的作用,因此,解析幾何中與平行線、三點(diǎn)共線等相關(guān)的問題均可在向量共線的新情景下設(shè)計(jì)問題。求解此類問題的關(guān)鍵是:正確理解向量共線與解析幾何中平行、三點(diǎn)共線等的關(guān)系,把有關(guān)向量的問題轉(zhuǎn)化為解析幾何問題。
例4、已知雙曲線的離心率,過的直線到原點(diǎn)的距離是(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的點(diǎn)C,D且C,D都在以B為圓心的圓上,求k的值.
解:∵(1)原點(diǎn)到直線AB:的距離.
故所求雙曲線方程為
(2)把中消去y,整理得 .
設(shè)的中點(diǎn)是,則
即
故所求k=±.
說明:為了求出的值, 需要通過消元, 想法設(shè)法建構(gòu)的方程.
例3、 已知⊙M:軸上的動(dòng)點(diǎn),QA,QB分別切⊙M于A,B兩點(diǎn),(1)如果,求直線MQ的方程;
(2)求動(dòng)弦AB的中點(diǎn)P的軌跡方程.
解:(1)由,可得由射影定理,得 在Rt△MOQ中,
故,
所以直線AB方程是
(2)連接MB,MQ,設(shè)由
點(diǎn)M,P,Q在一直線上,得
由射影定理得
即 把(*)及(**)消去a,
并注意到,可得
說明:適時(shí)應(yīng)用平面幾何知識(shí),這是快速解答本題的要害所在。
例2、已知x、y滿足約束條件
求目標(biāo)函數(shù)z=2x-y的最大值和最小值.
解:根據(jù)x、y滿足的約束條件作出可行域,即如圖所示的陰影部分(包括邊界).
作直線:2x-y=0,再作一組平行于的直線:2x-y=t,t∈R.
可知,當(dāng)在的右下方時(shí),直線上的點(diǎn)(x,y)滿足2x-y>0,即t>0,而且直線往右平移時(shí),t隨之增大.當(dāng)直線平移至的位置時(shí),直線經(jīng)過可行域上的點(diǎn)B,此時(shí)所對(duì)應(yīng)的t最大;當(dāng)在的左上方時(shí),直線上的點(diǎn)(x,y)滿足2x-y<0,即t<0,而且直線往左平移時(shí),t隨之減小.當(dāng)直線平移至的位置時(shí),直線經(jīng)過可行域上的點(diǎn)C,此時(shí)所對(duì)應(yīng)的t最小.
).
3x+5y-30=0,
所以,=2×5-3=7;=2×1-=.
例1、若直線mx+y+2=0與線段AB有交點(diǎn),其中A(-2, 3),B(3,2),求實(shí)數(shù)m的取值范圍。
解:直線mx+y+2=0過一定點(diǎn)C(0, -2),直線mx+y+2=0實(shí)際上表示的是過定點(diǎn)(0, -2)的直線系,因?yàn)橹本與線段AB有交點(diǎn),則直線只能落在∠ABC的內(nèi)部,設(shè)BC、CA這兩條直線的斜率分別為k1、k2,則由斜率的定義可知,直線mx+y+2=0的斜率k應(yīng)滿足k≥k1或k≤k2, ∵A(-2, 3) B(3, 2)
∴
∴-m≥或-m≤ 即m≤或m≥
說明:此例是典型的運(yùn)用數(shù)形結(jié)合的思想來解題的問題,這里要清楚直線mx+y+2=0的斜率-m應(yīng)為傾角的正切,而當(dāng)傾角在(0°,90°)或(90°,180°)內(nèi),角的正切函數(shù)都是單調(diào)遞增的,因此當(dāng)直線在∠ACB內(nèi)部變化時(shí),k應(yīng)大于或等于kBC,或者k小于或等于kAC,當(dāng)A、B兩點(diǎn)的坐標(biāo)變化時(shí),也要能求出m的范圍。
(1-a2)x2+2a2x-2a2=0. ①
雙曲線的離心率
還有,在設(shè)直線方程為點(diǎn)斜式時(shí),就應(yīng)該注意到直線斜率不存在的情形;又如,在求軌跡方程時(shí),還要注意到純粹性和完備性等.
五、參考例題
3.注意強(qiáng)化思維的嚴(yán)謹(jǐn)性,力求規(guī)范解題,盡可能少丟分
在解解析幾何的大題時(shí),有不少學(xué)生常出現(xiàn)因解題不夠規(guī)范而丟分的現(xiàn)象,因此,要通過平時(shí)的講評(píng)對(duì)易出現(xiàn)錯(cuò)誤的相關(guān)步驟作必要的強(qiáng)調(diào),減少或避免無畏的丟分.
例14(04全國(guó)文科Ⅰ)設(shè)雙曲線C:相交于兩個(gè)不同的點(diǎn)A、B.
(I)求雙曲線C的離心率e的取值范圍:
(II)設(shè)直線l與y軸的交點(diǎn)為P,且求a的值.
解:(I)由C與t相交于兩個(gè)不同的點(diǎn),故知方程組
有兩個(gè)不同的實(shí)數(shù)解.消去y并整理得
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com