相關(guān)習(xí)題
 0  263889  263897  263903  263907  263913  263915  263919  263925  263927  263933  263939  263943  263945  263949  263955  263957  263963  263967  263969  263973  263975  263979  263981  263983  263984  263985  263987  263988  263989  263991  263993  263997  263999  264003  264005  264009  264015  264017  264023  264027  264029  264033  264039  264045  264047  264053  264057  264059  264065  264069  264075  264083  266669 

科目: 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷(xiāo)售額最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;

若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,平面ABCD,E分別是AC,的中點(diǎn).

求證:平面;

求二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,,E,F,GH分別是矩形四條邊的中點(diǎn),RS,T是線段OF的四等分點(diǎn),,是線段CF的四等分點(diǎn),分別以HF,EGx,y軸建立直角坐標(biāo)系,設(shè)ERER分別交于,ESES交于,,ET交于點(diǎn)N,則下列關(guān)于點(diǎn),,,N與兩個(gè)橢圓::,:的位置關(guān)系敘述正確的是( )

A.三點(diǎn),,Nspan>在,點(diǎn)B.不在上,,N

C.點(diǎn)上,點(diǎn),,均不在D.,上,,均不在

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷(xiāo)售額最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: .

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在正三棱錐中,側(cè)棱長(zhǎng)為3,底面邊長(zhǎng)為2,E,F分別為棱ABCD的中點(diǎn),則下列命題正確的是( )

A.EFAD所成角的正切值為B.EFAD所成角的正切值為

C.AB與面ACD所成角的余弦值為D.AB與面ACD所成角的余弦值為

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如城鎮(zhèn)小汽車(chē)的普及率為75%,即平均每100個(gè)家庭有75個(gè)家庭擁有小汽車(chē),若從如城鎮(zhèn)中任意選出5個(gè)家庭,則下列結(jié)論成立的是( )

A.5個(gè)家庭均有小汽車(chē)的概率為

B.5個(gè)家庭中,恰有三個(gè)家庭擁有小汽車(chē)的概率為

C.5個(gè)家庭平均有3.75個(gè)家庭擁有小汽車(chē)

D.5個(gè)家庭中,四個(gè)家庭以上(含四個(gè)家庭)擁有小汽車(chē)的概率為

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】記無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,令

(1)若,寫(xiě)出,,的值;

(2)設(shè),若,求的值及時(shí)數(shù)列的前項(xiàng)和;

(3)求證:“數(shù)列是等差數(shù)列”的充要條件是“數(shù)列是等差數(shù)列”.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線與橢圓相交于兩點(diǎn).

(1)求 的周長(zhǎng);

(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),點(diǎn)在第一象限,點(diǎn)在線段上.若,求點(diǎn)的橫坐標(biāo);

(3)設(shè)直線不平行于坐標(biāo)軸,點(diǎn)為點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),直線軸交于點(diǎn).求面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬(wàn)元,且每年的能源消耗費(fèi)用(萬(wàn)元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

(1)請(qǐng)解釋的實(shí)際意義,并求的表達(dá)式;

(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢(qián)?

查看答案和解析>>

同步練習(xí)冊(cè)答案