科目: 來源: 題型:
【題目】 如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,側棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.
(1) 求直線PB與平面POC所成角的余弦值;
(2)線段上是否存在一點,使得二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C1:(x﹣1)2+y2=2,圓C2:(x﹣m)2+(y+m)2=m2 . 圓C2上存在點P滿足:過點P向圓C1作兩條切線PA,PB,切點為A,B,△ABP的面積為1,則正數(shù)m的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知斜率為k的直線l經過點(-1,0),且與拋物線C:y2=2px(p>0,p為常數(shù))交于不同的兩點M,N.當k=時,弦MN的長為.
(1)求拋物線C的標準方程.
(2)過點M的直線交拋物線于另一點Q,且直線MQ經過點B(1,-1),判斷直線NQ是否過定點?若過定點,求出該點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在四棱錐E-ABCD中,四邊形ABCD是平行四邊形,△BCE是等邊三角形,△ABE是等腰直角三角形,∠BAE=90°,且AC=BC.
(1)證明:平面ABE⊥平面BCE;
(2)求二面角A-DE-C的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動圓過定點P(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心C的軌跡方程;
(2)過點(2,0)的直線l與動圓圓心C的軌跡交于A,B兩點,求證:是一個定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導函數(shù)),若方程g(f(x))=0有四個不等的實根,則a的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線(a>b>0)的左、右焦點分別是F1,F2,過F2的直線交雙曲線的右支于P,Q兩點,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為 ( )
A. B. C. 2 D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C1:(x﹣1)2+y2=2,圓C2:(x﹣m)2+(y+m)2=m2 . 圓C2上存在點P滿足:過點P向圓C1作兩條切線PA,PB,切點為A,B,△ABP的面積為1,則正數(shù)m的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導函數(shù)),若方程g(f(x))=0有四個不等的實根,則a的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知恒等式(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n .
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n﹣2a2n的值;
(2)當n≥6時,求證: a2+2A a3+…+22n﹣2 a2n<49n﹣2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com