科目: 來源: 題型:
【題目】在數(shù)列 中,已知 ,為常數(shù).
(1)證明: 成等差數(shù)列;
(2)設(shè) ,求數(shù)列的前n項(xiàng)和 ;
(3)當(dāng)時(shí),數(shù)列 中是否存在不同的三項(xiàng)成等比數(shù)列,
且也成等比數(shù)列?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在上海高考改革方案中,要求每位高中生必須在物理、化學(xué)、生物、政治、歷史、地理6門學(xué)科(3門理科,3門文科)中選擇3門學(xué)科參加等級(jí)考試,小李同學(xué)受理想中的大學(xué)專業(yè)所限,決定至少選擇一門理科學(xué)科,那么小李同學(xué)的選科方案有________種.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,,第五組,右圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A. 6 B. 8 C. 12 D. 18
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:()的離心率為,橢圓與軸交于兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且點(diǎn)在軸的右側(cè),直線與直線交于兩點(diǎn),若以為直徑的圓與軸交于,求點(diǎn)橫坐標(biāo)的取值范圍及的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為,定義:為橢圓的“特征三角形”,如果兩個(gè)橢圓的特征三角形是相似三角形,那么稱這兩個(gè)橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比,已知點(diǎn)是橢圓的一個(gè)焦點(diǎn),且上任意一點(diǎn)到它的兩焦點(diǎn)的距離之和為4
(1)若橢圓與橢圓相似,且與的相似比為2:1,求橢圓的方程.
(2)已知點(diǎn)是橢圓上的任意一點(diǎn),若點(diǎn)是直線與拋物線異于原點(diǎn)的交點(diǎn),證明:點(diǎn)一定在雙曲線上.
(3)已知直線,與橢圓相似且短半軸長為的橢圓為,是否存在正方形,(設(shè)其面積為),使得在直線上,在曲線上?若存在,求出函數(shù)的解析式及定義域;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的一個(gè)焦點(diǎn)是,且
(1)求雙曲線的方程
(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請求出的范圍;若不存在,請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形為正方形,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.
(1)若當(dāng)時(shí),,求此時(shí)的值;
(2)設(shè),且.
(i)試將表示為的函數(shù),并求出的取值范圍;
(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)A,B分別為雙曲線 (a>0,b>0)的左、右頂點(diǎn),雙曲線的實(shí)軸長為4,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線y=x-2與雙曲線的右支交于M,N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使,求t的值及點(diǎn)D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com