相關習題
 0  263150  263158  263164  263168  263174  263176  263180  263186  263188  263194  263200  263204  263206  263210  263216  263218  263224  263228  263230  263234  263236  263240  263242  263244  263245  263246  263248  263249  263250  263252  263254  263258  263260  263264  263266  263270  263276  263278  263284  263288  263290  263294  263300  263306  263308  263314  263318  263320  263326  263330  263336  263344  266669 

科目: 來源: 題型:

【題目】定義在上的函數(shù)滿足,則下列說法正確的是(

A.處取得極小值,極小值為

B.只有一個零點

C.上恒成立,則

D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),有以下命題:

是奇函數(shù);

單調遞增函數(shù);

③方程僅有1個實數(shù)根;

④如果對任意,則的最大值為2.

則上述命題正確的有_____________.(寫出所有正確命題的編號)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形ABCD的一邊CD內(nèi)任取一點E,過E作對角線AC的平行線,交對角線BD于點G、交邊AD于點H、交邊BA的延長線于點F,聯(lián)結BH交DF于點M求證:

(1)C、G、M三點共線;

(2)C、E、M、F四點共圓.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求曲線在點處切線的方程;

(Ⅱ)求函數(shù)的單調區(qū)間;

(Ⅲ)當時,恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中,a為實數(shù).

(1)當函數(shù)的圖像在上與x軸有唯一的公共點時,求實數(shù)a的取值范圍;

(2)當時,求函數(shù)上的最大值與最小值

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著網(wǎng)購人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來越多的便捷移動支付方式受到了人們的青睞,更被網(wǎng)友們評為“新四大發(fā)明”之一.隨著人們消費觀念的進步,許多人喜歡用信用卡購物,考慮到這一點,一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發(fā)的新支付方式,簡單便捷,同時也滿足了部分網(wǎng)上消費群體在支付寶余額不足時的“賒購”消費需求.為了調查使用螞蟻花唄“賒購”消費與消費者年齡段的關系,某網(wǎng)站對其注冊用戶開展抽樣調查,在每個年齡段的注冊用戶中各隨機抽取100人,得到各年齡段使用螞蟻花唄“賒購”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購”的人數(shù)百分比y與年齡x成線性相關關系,利用統(tǒng)計圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點代表該年齡段的年齡,求所調查群體各年齡段“賒購”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊用戶共有2000人,試估算該網(wǎng)站20歲的注冊用戶中使用花唄“賒購”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購”的人群中按分層抽樣的方法隨機抽取8人,再從這8人中簡單隨機抽取2人調查他們每個月使用花唄消費的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:,.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,已知,為拋物線上兩點,為拋物線焦點.分別過,作拋物線的切線交于點.

(1)若,求;

(2)若,分別交軸于,兩點,試問的外接圓是否過定點?若是,求出該定點坐標,若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列四個命題:

①函數(shù)的最大值為1;

②已知集合,則集合A的真子集個數(shù)為3;

③若為銳角三角形,則有;

函數(shù)在區(qū)間內(nèi)單調遞增的充分必要條件.

其中正確的命題是______.(填序號)

查看答案和解析>>

科目: 來源: 題型:

【題目】天文學中為了衡量星星的明暗程度,古希臘天文學家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應用,英國天文學家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(較小時, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

同步練習冊答案