科目: 來源: 題型:
【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費(fèi)m(萬元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤y(萬元)表示為年促銷費(fèi)m(萬元)的函數(shù);
(2)求今年該產(chǎn)品利潤的最大值,此時促銷費(fèi)為多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學(xué)生各選取多少人?
(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙、丙三人玩摸卡片游戲,現(xiàn)有標(biāo)號為1到12的卡片共12張,每人摸4張.
甲說:我摸到卡片的標(biāo)號是10和12;
乙說:我摸到卡片的標(biāo)號是6和11;
丙說:我們?nèi)烁髯悦娇ㄆ臉?biāo)號之和相等.
據(jù)此可判斷丙摸到的編號中必有的兩個是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會期間累計觀看冬奧會的時間情況.收集了200位男生、100位女生累計觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機(jī)抽取20個人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.
(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;
(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;
(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數(shù).已知200位男生中累計觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認(rèn)為“該校學(xué)生觀看冬奧會累計時間與性別有關(guān)”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方體 中, 分別為 的中點(diǎn),點(diǎn) 是底面內(nèi)一點(diǎn),且 平面 ,則 的最大值是( )
A. B. 2 C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】利用獨(dú)立性檢驗的方法調(diào)查高中生的寫作水平與離好閱讀是否有關(guān),隨機(jī)詢問120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計算可得K2=4.236
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,可得正確的結(jié)論是( 。
A.有95%的把握認(rèn)為“寫作水平與喜好閱讀有關(guān)”
B.有97.5%的把握認(rèn)為“寫作水平與喜好閱讀有關(guān)”
C.有95%的把握認(rèn)為“寫作水平與喜好閱讀無關(guān)”
D.有97.5%的把握認(rèn)為“寫作水平與喜好閱讀無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=–3x2+2x–m+1.
(1)若x=0為函數(shù)的一個零點(diǎn),求m的值;
(2)當(dāng)m為何值時,函數(shù)有兩個零點(diǎn)、一個零點(diǎn)、無零點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點(diǎn)曲線的一個焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上任意一點(diǎn),過點(diǎn)作軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
【答案】(I);(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線化為標(biāo)準(zhǔn)方程,可求得的焦點(diǎn)坐標(biāo)分別為,可得,所以,即拋物線的方程為;(Ⅱ)結(jié)合(Ⅰ),可設(shè),得,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得,直線的方程為,整理得的方程為,此時直線恒過定點(diǎn).
試題解析:(Ⅰ)由曲線,化為標(biāo)準(zhǔn)方程可得, 所以曲線是焦點(diǎn)在軸上的雙曲線,其中,故, 的焦點(diǎn)坐標(biāo)分別為,因為拋物線的焦點(diǎn)坐標(biāo)為,由題意知,所以,即拋物線的方程為.
(Ⅱ)由(Ⅰ)知拋物線的準(zhǔn)線方程為,設(shè),顯然.故,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得
①當(dāng),即時,直線的方程為,
②當(dāng),即時,直線的方程為,整理得的方程為,此時直線恒過定點(diǎn), 也在直線的方程為上,故直線的方程恒過定點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù),
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若時,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若數(shù)列滿足, ,記的前項和為,求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為是橢圓的兩個焦點(diǎn),是橢圓上任意一點(diǎn),且的周長是6.
(1)求橢圓的方程;
(2)設(shè)圓:,過橢圓的上頂點(diǎn)作圓的兩條切線交橢圓于兩點(diǎn),當(dāng)圓心在軸上移動且時,求的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com