相關(guān)習(xí)題
 0  231303  231311  231317  231321  231327  231329  231333  231339  231341  231347  231353  231357  231359  231363  231369  231371  231377  231381  231383  231387  231389  231393  231395  231397  231398  231399  231401  231402  231403  231405  231407  231411  231413  231417  231419  231423  231429  231431  231437  231441  231443  231447  231453  231459  231461  231467  231471  231473  231479  231483  231489  231497  266669 

科目: 來源: 題型:解答題

14.某網(wǎng)絡(luò)媒體為了解其市場占有率,隨機(jī)抽取50位網(wǎng)民,調(diào)查他們是否為該網(wǎng)絡(luò)媒體的會員,結(jié)果如下:
 是否為會員
性別
 是否 
 男生 20
 女生 1015 
(I)已按性別采用分層抽樣的方式從這50位網(wǎng)民中抽取了6人,為進(jìn)一步了解他們對該媒體的滿意度,需從這6人中隨機(jī)選取2人進(jìn)行問卷調(diào)查,求選取的2人中有女生的概率;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為網(wǎng)民是否為該媒體會員與性別有關(guān)?下面的臨界值表供參考:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k0 2.072 2.7063.841 5.024 6.635 7.879 10.828 
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖所示,AB為圓D的直徑,BC為圓O的切線,過A作OC的平行線交圓O于D,BD與OC相交于E.
(I)求證:CD為圓O的切線;
(Ⅱ)若OA=AD=4,求OC的長.

查看答案和解析>>

科目: 來源: 題型:解答題

12.定義:和三角形一邊和另兩邊的延長線同時(shí)相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點(diǎn),AD⊥IC于點(diǎn)D.
(1)試探究:D、E、F三點(diǎn)是否同在一條直線上?證明你的結(jié)論.
(2)設(shè)AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,$\frac{DE}{EF}=n$,試作出分別以$\frac{m}{n}、\frac{n}{m}$為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}+ax,x>0\\{2^x}-1,x≤0\end{array}\right.$有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,0)B.(0,1]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,四邊形ABCD為正方形,以AB為直徑 的半圓E與以C為圓心CB為半徑的圓弧相交于點(diǎn)P,過點(diǎn)P作圓C的切線PF交AD于點(diǎn)F,連接CP.
(Ⅰ)證明:CP是圓E的切線;
(Ⅱ)求$\frac{AF}{PF}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=a-$\frac{1}{x}$-lnx,g(x)=ex-ex+1.
(Ⅰ)若a=2,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)=0恰有一個(gè)解,求a的值;
(Ⅲ)若g(x)≥f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓C的左、右焦點(diǎn)F1,F(xiàn)2在x軸上,左頂點(diǎn)為A,離心率e=$\frac{\sqrt{3}}{2}$,過原點(diǎn)O的直線(與x軸不重合)與橢圓C交于P,Q兩點(diǎn),直線PA,QA分別與y軸交于M,N兩點(diǎn),△PF1F2的周長為8+4$\sqrt{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$的值;
(Ⅲ)求四邊形MF1NF2面積的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.二面角α-1-β,γ-a-δ,平面α⊥平面γ,平面β⊥平面δ,且兩二面角大小分別為θ1和θ2,則θ1和θ2的關(guān)系為不確定.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,AC⊥面BCD,BD⊥面ACD,若AC=CD=1,∠ABC=30°,求二面角C-AB-D的大小的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.正方形ABCD所在平面外一點(diǎn)P,有PA=PB=PC=PD=AB,則二面角P-AB-C的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案