相關(guān)習(xí)題
 0  232847  232855  232861  232865  232871  232873  232877  232883  232885  232891  232897  232901  232903  232907  232913  232915  232921  232925  232927  232931  232933  232937  232939  232941  232942  232943  232945  232946  232947  232949  232951  232955  232957  232961  232963  232967  232973  232975  232981  232985  232987  232991  232997  233003  233005  233011  233015  233017  233023  233027  233033  233041  266669 

科目: 來源: 題型:解答題

4.已知cosx=-$\frac{\sqrt{2}}{10}$,x∈($\frac{π}{2}$,π).
(1)求sinx的值;
(2)求tan(2x+$\frac{π}{4}$)的值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)函數(shù)f(x)是定義在區(qū)間(-∞,+∞)上以2為周期的函數(shù),記Ik=(2k-1,2k+1](k∈Z).已知當(dāng)x∈I0時(shí),f(x)=x2,如圖.
(1)求函數(shù)f(x)的解析式;
(2)求使方程f(x)=ax在Ik(k∈N*)上有兩個(gè)不相等實(shí)數(shù)根的關(guān)于a的集合Mk

查看答案和解析>>

科目: 來源: 題型:解答題

2.(1)已知角α終邊上一點(diǎn)P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)已知sinα+cosα=$\frac{1}{5}$,0≤α≤π,求cos(2α-$\frac{π}{4}$).

查看答案和解析>>

科目: 來源: 題型:解答題

1.某校有1400名考生參加市模擬考試,現(xiàn)采用分層抽樣的方法從文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進(jìn)行成績分析.得到下面的成績頻率分布表:
分?jǐn)?shù)分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科頻數(shù)24833
理科頻數(shù)3712208
(1)估計(jì)文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分?jǐn)?shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴(yán)重,統(tǒng)計(jì)結(jié)果如下:
文科理科
概念1530
其它520
問是否有90%的把握認(rèn)為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨(dú)立性檢驗(yàn)臨界值表)
附參考公式與數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差為2,若a3=4,求a12

查看答案和解析>>

科目: 來源: 題型:填空題

19.為了調(diào)查市民對某活動(dòng)的認(rèn)可程度,研究人員對其所在地區(qū)年齡在10~60歲間的n位市民作出調(diào)查,并將統(tǒng)計(jì)結(jié)果繪制成頻率分布直方圖如圖所示,若被調(diào)查的年齡在20~30歲間的市民有480人,則可估計(jì)被調(diào)查的年齡在40~50歲間的市民有320人.

查看答案和解析>>

科目: 來源: 題型:填空題

18.設(shè)f(x)=$\frac{4}{{4}^{x}+2}$,Sn為數(shù)列{an}的前n項(xiàng)和,{an}滿足a1=0,n≥2時(shí),an=f($\frac{1}{n}$)+f($\frac{2}{n}$)+f($\frac{3}{n}$)+…+f($\frac{n-1}{n}$),則$\frac{{a}_{n+1}}{2{S}_{n}+{a}_{6}}$的最大值為$\frac{2}{7}$.

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點(diǎn)分別為A1,A2,P,Q,T為橢圓異于A1,A2的點(diǎn),若橢圓C的焦距為2$\sqrt{2}$,且橢圓過點(diǎn)M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{7}}{2}$).
(1)求橢圓C的方程;
(2)若△OPQ的面積為$\sqrt{2}$,A1R∥OP,求證:OQ∥A2R.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+2x
(1)求在點(diǎn)(0,0)處曲線y=f(x)的切線方程;
(2)求過點(diǎn)(-1,-3)的曲線y=f(x)的切線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知單調(diào)遞增的等差數(shù)列{an}中,a1+a2+a3=21,a1a2a3=231.
(1)求數(shù)列中a2的值;
(2)求數(shù)列的通項(xiàng)公式an

查看答案和解析>>

同步練習(xí)冊答案