相關(guān)習(xí)題
 0  232971  232979  232985  232989  232995  232997  233001  233007  233009  233015  233021  233025  233027  233031  233037  233039  233045  233049  233051  233055  233057  233061  233063  233065  233066  233067  233069  233070  233071  233073  233075  233079  233081  233085  233087  233091  233097  233099  233105  233109  233111  233115  233121  233127  233129  233135  233139  233141  233147  233151  233157  233165  266669 

科目: 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=($\frac{2}{e}$)x,g(x)=($\frac{e}{3}$)x,其中e為自然對數(shù)的底數(shù),則( 。
A.對于任意實數(shù)x恒有f(x)≥g(x)B.存在正實數(shù)x使得f(x)>g(x)
C.對于任意實數(shù)x恒有f(x)≤g(x)D.存在正實數(shù)x使得f(x)<g(x)

查看答案和解析>>

科目: 來源: 題型:選擇題

8.函數(shù)y=log3x+$\frac{1}{{{{log}_3}x}}$-1的值域是(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3]∪[1,+∞)C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若函數(shù)f(x)=x2+ax+b的零點是1和3,則函數(shù)f(x)( 。
A.在(-∞,3)上單調(diào)遞增
B.在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增
C.在[1,3]上單調(diào)遞增
D.單調(diào)性不能確定

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<0)的圖象的最高點為($\frac{3π}{8}$,$\sqrt{2}$),其圖象的相鄰兩個對稱中心之間的距離為$\frac{π}{2}$,則φ=( 。
A.$-\frac{π}{3}$B.$-\frac{π}{4}$C.$-\frac{π}{6}$D.$-\frac{π}{12}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知命題p:函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{2}+1,x≥0}\\{(a+2){e}^{ax},x<0}\end{array}\right.$為R上的單調(diào)函數(shù),則使命題p成立的一個充分不必要條件為( 。
A.a∈(-1,0)B.a∈[-1,0)C.a∈(-2,0)D.a∈(-∞,-2)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=2ax2+4(a-3)x+5在區(qū)間(-∞,3)上是減函數(shù),則a的取值范圍是(  )
A.$[0,\frac{3}{4}]$B.$(0,\frac{3}{4}]$C.$[0,\frac{3}{4})$D.$(0,\frac{3}{4})$

查看答案和解析>>

科目: 來源: 題型:解答題

3.求下列函數(shù)的定義域:
(1)y=$\frac{\sqrt{3-x}}{x+1}$+(x-2)0;
(2)y=$\frac{\sqrt{x+4}+\sqrt{1-x}}{x}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.矩形的對角線垂直平分改寫成 p∧q 形的命題為矩形的對角線垂直且互相平分,在命題 p,q,p∧q 中真命題是矩形的對角線互相平分.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.某組合體如圖所示,上半部分是正四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.正四棱錐P-EFGH的高為$\sqrt{3}$,EF長為2,AE長為1,則該組合體的表面積為(  )
A.20B.4$\sqrt{3}$+12C.16D.4$\sqrt{3}$+8

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若函數(shù)f(x)=x|x|-x+a2-a-2為R上的奇函數(shù),則實數(shù)a的值為(  )
A.-1B.2C.-1或2D.-2或1

查看答案和解析>>

同步練習(xí)冊答案