相關(guān)習(xí)題
 0  229132  229140  229146  229150  229156  229158  229162  229168  229170  229176  229182  229186  229188  229192  229198  229200  229206  229210  229212  229216  229218  229222  229224  229226  229227  229228  229230  229231  229232  229234  229236  229240  229242  229246  229248  229252  229258  229260  229266  229270  229272  229276  229282  229288  229290  229296  229300  229302  229308  229312  229318  229326  266669 

科目: 來源: 題型:填空題

19.若點M是以橢圓$\frac{x^2}{4}+\frac{y^2}{3}$=1的短軸為直徑的圓在第一象限內(nèi)的一點,過點M作該圓的切線交橢圓于P,Q兩點,橢圓的右焦點為F2,則△PQF2的周長是4.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.橢圓$\frac{x^2}{4}+{y^2}=1$的右焦點為F,直線x=t與橢圓相交于點A,B,若△FAB的周長等于8則△FAB的面積為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知拋物線C的頂點在原點,焦點在y軸正半軸上,拋物線上的點P(m,4)到其焦點F的距離等于5.
(1)求拋物線C的方程;
(2)如圖,過拋物線焦點F的直線l與拋物線交于A,B兩點,與圓M:(x-1)2+(y-4)2=4交于C,D兩點,且|AC|=|BD|,求三角形OAB的面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)x1、x2分別是關(guān)于x的方程x2+mx+m2-m=0的兩個不相等的實數(shù)根,那么過兩點A(x1,x12),B(x2,x22)的直線與圓(x-1)2+(y+1)2=1的位置關(guān)系是(  )
A.相離B.相切C.相交D.隨m的變化而變化

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,P(-2,1)是C1上一點.
(1)求橢圓C1的方程;
(2)設(shè)A,B,Q是P分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于AB的直線l交C1于異于P、Q的兩點C,D,點C關(guān)于原點的對稱點為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(0,-1),且F1、F2分別是橢圓C的左、右焦點,不經(jīng)過F1的斜率為k的直線l與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果直線AF1、l、BF1的斜率依次成等差數(shù)列,求k的取值范圍,并證明AB的中垂線過定點.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知F是橢圓C:$\frac{x^2}{20}+\frac{y^2}{4}$=1的右焦點,P是C上一點,A(-2,1),當(dāng)△APF周長最小時,其面積為(  )
A.4B.8C.$\sqrt{3}$D.$2\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知點C是圓F:(x-1)2+y2=16上任意一點,點F′與點F關(guān)于原點對稱,線段CF′的中垂線與CF交于P點.
(1)求動點P的軌跡方程E;
(2)設(shè)點A(4,0),若直線PQ⊥x軸且與曲線E交于另一點Q,直線AQ與直線PF交于點B.
①證明:點B恒在曲線E上;
②求△PAB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點A(0,1),離心率e=$\frac{\sqrt{6}}{3}$,圓C:x2+y2=4,從圓C上任意一點P向橢圓T引兩條切線PM、PM.
(1)求橢圓T的方程;
(2)求證:PM⊥PN.

查看答案和解析>>

科目: 來源: 題型:解答題

10.橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點分別為F1,F(xiàn)2,右頂點為A,上頂點為B.已知$|AB|=\frac{{\sqrt{7}}}{2}|{F_1}{F_2}|$
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點M(-2a,0)的直線交橢圓Γ于P、Q(不同于左、右頂點)兩點,且$\frac{1}{{|P{F_1}|}}+\frac{1}{{|Q{F_1}|}}=\frac{1}{12}$.當(dāng)△PQF1面積最大時,求直線PQ的方程.

查看答案和解析>>

同步練習(xí)冊答案